Impact Forecasting for Severe **Wind Events**

Research advisory forum / 2018

Harald Richter, Serena Schroeter, Beth Ebert, Shoni Maguire, Jeff Kepert / Bureau of Meteorology

Craig Arthur, Martin Wehner, Mark Dunford, Jane Sexton, Mark Edwards / Geoscience Australia

(f) (a) bnhcrc (v) (a) bnhcrc

To develop a pilot capability that will make useful predictions of community impacts of extreme wind & rain with the goal of improving timely mitigating actions by a range of stakeholders.

Project Objective

Data & Methods

WORKFLOW

Hazard Derivation

Wind Output -> Wind Hazard

Most likely damage creator (= "the hazard") is a derived field: Looking for the maximum gust over a period of time →

Experiment with maximum wind speeds / gust duration:

- Wind maximum over several vertical model levels (2.5; 13.3; 33.3; 60.0 .. m)
- Wind maximum over every dynamical model time step ("HMF" concept)
- 3 sec gust encapsulated in the "gust" parameter U_g

Surface Wind Hazard

21 April 2015

Vulnerability Relations

Wind Hazard -> Damage Potential: Heuristic Vulnerability Relations to set up Workflow

First attempt of a Damage Data-driven Vulnerability: April 2015 Dungog Case

Dungog Case: What happened?

What derails a nice clean wind / house damage relationship?

[1] Building design wind speeds in the area mostly exceed 30 m s⁻¹ → need an event with stronger winds

[2] Building damage seems to have been inflicted mostly in an indirect manner (impacts tend to be multi-hazard)

[3] Summative damage reporting inside the damage assessment reports does not permit establishment of clear links to individual hazards → SES BEACON damage reporting template to update

Exposure

Data on Asset Types & Locations

National Exposure Information System (NEXIS)

Dungog – Exposure Uncertainty: Statistically Derived Asset Types

Relationship of NEXISextracted and surveyed house types for all of Dungog post-1982 houses.

A "house type" is defined as a specific combination of wall material (10 categories) and roof material (6 categories).

House type proportion of building stock from NEXIS

Red circle: Proportion of house type X

NEXIS says: 18% Survey says: 2%

Spatial Impact Forecast

Spatial Impacts in Visual Weather

Spatial Impacts (Sensitivity to Hazard)

Next Steps

- 1) Test joint wind & rain hazard predictors for reported residential building damage
- 2) Include additional case studies with stronger winds and clean damage assessment data to derive single-hazard and joint multi-case vulnerability relationships (use BARRA reanalysis)
- 3) Validation of predicted impacts against reported damage data need for good data!