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UNDERSTANDING SPOT FIRE DYNAMICS...
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8 EXPERIMENTATION
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RECENT PROGRESS

GEOMETRIC MODELS WITH PYROGENIC POTENTIAL
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RECENT PROGRESS

GEOMETRIC MODELS WITH PYROGENIC POTENTIAL

Separated V fire experiment and
simulated fire propagation.
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RECENT PROGRESS

UNDERSTANDING ARC FIRES

Fully coupled three-dimensional
fire atmosphere model
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RECENT PROGRESS

UNDERSTANDING ARC FIRES

Two-dimensional simulator with Fully coupled three-dimensional
pyrogenic potential fire atmosphere model
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RECENT PROGRESS

EFFECT OF SPOT FIRE DENSITY ON PEAK FIRE POWER

Fireline intensity
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RECENT PROGRESS

EFFECT OF SPOT FIRE DENSITY ON PEAK FIRE POWER
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RECENT PROGRESS

EFFECT OF TERMINAL VELOCITY DYNAMICS ON LONG-RANGE EMBER DISPERSAL
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UTILISATION PLANS

The immediate avenue for utilisation of this research will be
scoping enhanced frameworks for firefighter and Fire Behaviour
Analyst training.
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