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RATIONALE

In the last decade of the 20t century, floods caused 100,000 deaths and affected almost 1.4 billion
people worldwide.

Australia

- 1859 deaths from 1900 to 2015
- average annual cost for the last 40 years: $377M/year

2010-2011 floods in Brisbane and South-East Queensiand:
« 35 confirmed deaths
«  $2.38 billion damage

June 2016 floods in East Australia and Tasmania
« 4 deaths
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« approximately 14500 claims totalling $56M were St. George (QLD), 2010 March 5th, http§7/\&@w.abc.net.au
lodged to the Insurance Council of Australia.

An accurate prediction of
the flood wave arrival time, depth and velocity
Is essential to reduce flood related mortality and damages.
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FLOOD FORECASTING SYSTEMS

1. HYDROLOGIC MODEL.:
Input: rain, PET

Output: discharge hydrograph
Model selected: GRKAL

Q 4 UPSTREAM

DOWNSTREAM

Normal Depth

2. HYDRAULIC MODEL:
Input: discharge hydrograph

Output: water depth and velocity at each point of the flooded area
Model selected: LISFLOOD-FP
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HYPOTHESIS:
REMOTE SENSING DATA CAN IMPROVE FLOOD FORECAST ACCURACY

1. HYDROLOGIC MODEL: REMOTE SENSING SURFACE SOIL MOISTURE

interception

SMQOS coverage (morning pass) on 3d and 5™M July 2014 4 |
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HYPOTHESIS:
REMOTE SENSING DATA CAN IMPROVE FLOOD FORECAST ACCURACY
2. HYDRAULIC MODEL: REMOTE SENSING-DERIVED FLOOD EXTENT and LEVEL

1) RS-derived maps of flood extent can be
used to identify gross errors in the results
of the numerical model or to detect
unexpected events such as levee
breaches.

2) RS-derived water level at selected
locations can be used to fine tune the
parameters of the hydraulic model.
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STUDY BASINS

Condamine-Balonne c Clarence
(75370 sqg. km) A (20730 sq. km)
St. George, 2012 Feb 7t, http://www.abc.net.au Grafton, 2013 Jan 30%, Mr. Williamson
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HYDROLOGIC MODEL
CALIBRATION:Three catchment systems:

asge,

S1 - LUMPED SYSTEM

UB-AREAS)

CALIBRATION @ ONE GAUGE CALIBRATION @ SIX GAUGES

CALIBRATION @ ONE GAUGE
Two calibration scenarios:

» calibration using streamflow;

» calibration using streamflow and SMOS soil moisture.

Data: 2010 - 2012 calibration
2013 - 2014 validation
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HYDROLOGIC MODEL
CALIBRATION USING STREAMFLOW DATA

=  Performance at Lilydale (downstream gauge)

= Performance at upstream gauges

E.g. Paddys Flat

)
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)
000
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NS S1 S2 S3
Cal. 0.81 0.83 0.83
Val. 0.67 0.74 0.76
NS S1 S2 S3
Cal. 0.59 0.85
Val. 0.56 0.76

Distributed models are recommended for large-scale catchments.

Large uncertainty exists at ungauged sub-catchments, more data insertion is
required --> RS soil moisture.
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HYDROLOGIC MODEL

JOINT CALIBRATION USING STREAMFLOW
AND REMOTE SENSING SOIL MOISTURE DATA

=  Performance at Lilydale (downstream gauge)

NS s1 S2 s3
Cal-Q 0.81 0.83 0.83
Cal-Joint 0.79 0.79 0.80 1w : :
Val-Q 0.67 0.74 0.76 R Lilydale
Val-Joint 0.68 0.76 077 | = s A

5 a

Minimizing errors in  soil moisture may lead to sub-optimal streamflow
simulation during the calibration period

but can lead to a more robust parameter set
which has the potential to improve the future forecasts.
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HYDROLOGIC MODEL

JOINT CALIBRATION USING STREAMFLOW
AND REMOTE SENSING SOIL MOISTURE DATA

Performance at upstream gauges
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Including RS soil moisture improves
streamflow prediction at ungauged stations.
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HYDROLOGIC MODEL
JOINT CALIBRATION USING STREAMFLOW

AND REMOTE SENSING SOIL MOISTURE DATA

Scheme 2

JACKADGERY

LmYDALE

= Scheme 3 (refere Four out of five upstream locations were improved
| through incorporating remote sensing soil moisture data in
| the cohbro’non period.

Cal-Q 0.85
Cal-Joint 0.82
Val-Q 0.76
Val-Joint 0.76
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HYDROLOGIC MODEL
CALIBRATION - Some conclusions

% RS soil moisture can improve discharge assessment during forecasting
periods at gauged locations.

% RS soil moisture has stronger impact on discharge assessment during
calibration and forecasting periods at ungauged locations.

% The impact of RS soil moisture decreases when the density of s’rreomflow
calibration sites increases.

Hydrologic model
Prediction of the input discharge hydrograph

\

Hydraulic model

Flood extent and level in the lower Clarence co’rchmen’r
Historical flood event: Jan. 2011
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HYDRAULIC MODEL

IMPLEMENTATION DATA:
DEM: Tm Lidar DEM (CVC, 2010)

River bathymetry
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HYDRAULIC MODEL
RIVER BATHYMETRY: field data from Mountain View to Copmanhurst

Cross section N. 43 - Depth, =-11.3581m ; meanDEPTH, =7.146m; WIDTH, =117.8734m; AREAb:842.325m; Cross section N. 49 - Depthb:—4.4042m ; meanDEPTHb:3.2492m; WIDTHb:247.6307m; AREAb=804.5948m2
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We analysed the new bathymetric dataset to
extrapolate the bathymetry of the river

from Copmahurst to Lilydale bnhcre.com.au




HYDRAULIC MODEL

RIVER BATHYMETRY from Copmanhurst to Lilydale

“BASE” MODEL

> Cross section shape: s = 1.8 - field data (Copmanhurst to Mountain View) ~ PARABULA
> Flow direction: Yamazaki et al. (2014) - Global Database

» Cross section Width at bankfull: > Cross section Depth at bankfull:

Water Observations from Space - GA .
+ Catchment Area, A., Yamazaki et al. (2014) -

Global Database

<€ 7y >
« Discharge at bankfull, Q,., from Gordon et al.

(1996) - Victoria, NSW

*  Mean Depth at bankfull, h,,eq,, from De Rose et
al. (2008) - Victoria, NSW

+  Max Depth at bankfull, h,,,,, - field data
(Copmanhurst to Mountain View)
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HYDRAULIC MODEL
2011, 2013 FLOOD EVENT

- Lilydale to Copmanhurst Copmanhurst to Yamba

1 HDEM Field data (Monash Univ. and CVC — BMT WBM)
2 Extrapolated bathymetric dataset Field data (Monash Univ. and CVC — BMT WBM)
MODEL CALIBRATION:

» PARAMETER: river roughness (constant along the river)
» CALIBRATION DATA:

+ Field data : WATER LEVELS measured at 10 gauge stations;
4 high water marks

+ Remote Sensing data: FLOOD EXTENTS detected by
2 Cosmo Sky Med images and 2 Airborne images

. L % Yuraygir
COPMANHURST -~ Tyndale :
-5 Kyarran
25.8 km £
Rogans Brldge Southgate i EL Calliope  Coldstream
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HYDRAULIC MODEL e e
COMPARISON WITH GAUGED WATER LEVELS S

model, n=0.0225
model, n=0.017
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> A more precise description of the river geometry from Lilydale to Copmanhurst
(25.8 km) improves the forecast accuracy over the total length of the river (125 km).

NS

> Spatial variability of the catchment flooding behaviour = spatial variability of the

< .
: river roughness parameter.
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HYDRAULIC MODEL D roem oo

HDEM - n=0.025

COMPARISON WITH HIGH WATER MARKS © New oot meo0z
] New Bath - n=0.02
LJ  New Bath - n=0.022&
Easting Northing Year Date mAFZ New Bath - n=0.025
527422.457 6738897.586 2011 14-Jan 1.120 — 0.4 F F F F
523268.024 6745594.561 2011 N/A 2430 N E % |
525235.558 6748292.862 2011 N/A 2.034 [ % 0.2
507640.182 6736898.728 2011 /A 4.443 = Lol
B 3 L
% 0
= L]
o
= 0.2
S =

We need to check the model performances
against spatially distributed data.

The check points must include ’rhe upstream/central area of the model domain.

New Bath n= 0.02 0.12

GRAFTON - check point

d New Bath n=0.0025 0.12
HDEM n = 0.02 Om New Bath n=0.025 0.10
HDEM n=0.017 Om
HDEM n=0.025 6.4m
New Bath n=0.017 0Om
New Bath n=0.02 Om
New Bath n=0.0025 Om

New Bath n=0.025 3.9m
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HYDRAULIC MODEL
COMPARISON WITH REMOTE SENSING-DERIVED FLOOD EXTENT

January 2011 — : .
| Image m Acquisition time | Spatial Coverage
18 .“,--' ‘.“ ...........

Lilydale

16]- § S . eratton Cosmo Sky Med 3 m Jan 12, 6pm ~7% modelled area
_ 1ap (384/5504 km?)
E Ll K
= ii ' Cosmo Sky Med 3 m Jan 13th, 7am ~10% modelled area
5 s o (568/5504 km?)
A Y o D
j - Airborne Image 0.1m Jan 12t ... ~0.35% modelled area
5 B NS — NSW LPI {12 pm} (19/5504 km?)
10 11 12 13 14 Airborne Image 0.1m Jan12t, .. ~0.5% modelled area

time [days]

— NSW LPI {12 pm} (27/5504 km2)
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2011 flood — Comparison of RS-derived with computed flood extent

The comparison between modelled and observed flooded
area adllows the detection of the main problems in the

modelling chain.
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HYDRAULIC MODEL
COMPARISON WITH REMOTE SENSING-DERIVED FLOOD EXTENT
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The model over-predicts the flooded area.
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HYDRAULIC MODEL
CATCHMENT BEHAVIOUR: 2011 AND 2013 FLOODS, GAUGED LEVELS
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HYDRAULIC MODEL
CALIBRATION - Some conclusions

% These results underlined the limits of a punctual model-measurements comparison.

% More coherent and explicative modalities of comparison are possible thanks to
the intrinsically two dimensional features of RS observations.

% The use of spatially distributed information can lead to a more robust parameter
set which has the potential to improve both infra-event and inter-event forecast.

s A multi-objective calibration strategy able to exploit the temporal continuity of
gauged data and the spatial distribution of RS observations is recommended.

FUTURE WORK:
Can we constrain a hydraulic model using remote sensing data only?

24 bnhcrc.com.au ‘
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IMPROVING FLOOD FORECAST SKILL

USING REMOTE SENSING DATA
Conclusions

% RS soil moisture can improve streamflow prediction in ungauged
catchments.

% RS-derived water extent and level are pivotal for the constraining
of the parameter space of hydraulic models.
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