

Economic analysis of prescribed burning for wildfire management in Western Australia

Veronique Florec, David Pannell, Michael Burton, Joel Kelso, Drew Mellor and George Milne

veronique.florec@uwa.edu.au

Resource allocation

Pre-fire stage (i.e. prescribed burning)

Resource allocation

Pre-fire stage (i.e. prescribed burning)

During fire (suppression)

Resource allocation

Pre-fire stage (i.e. prescribed burning)

During fire (suppression)

Post-fire (damages)

Resource allocation

Pre-fire stage (i.e. prescribed burning)

During fire (suppression)

Post-fire (damages)

Why economics?

Implications of different uses of resources?

How do we maximise benefits?

Resource allocation between fire management activities?

Trade-offs between different objectives?

South-west Western Australia

People

Biodiversity

Flammable vegetation

Wildland-urban interface scenario

Unique flora and fauna

Fuel levels

~60% of south-west Australian forests fuels >7 years

- Regional centres
- 0-4 years
- 5-9 years
- 10-20 years
- 21+ years

Research goal:

What prescribed-burning strategy minimises the sum of costs and damages?

Evaluate trade-offs between:

Prescribed-burning costs

Suppression costs

Wildfire damages

Application of an economic model to prescribed burning programs

Cost plus net value change (Cost-benefit analysis)

AUSTRALIS Bushfire Simulator (Joel Kelso, Drew Mellor and George Milne)

Minimize

Starting with a synthetic landscape

100,000 ha

Homogeneous jarrah forest

Prescribed burning: 5% landscape/year

Prescribed burning: 5% landscape/year

Prescribed burning: 5% landscape/year

Prescribed burning: 10% landscape/year

- 3 prescribed burning strategies
 - x 3 treatment sizes
 - + no-strategy case for comparison = 10
- 4 varying weather conditions
 - $4 \times 10 = 40$ scenarios
- Random ignitions
 - 40 scenarios × 30 random ignitions
 - = 1200 fires simulated

Area burned Intensity

Damages: ← Area burned
• Timber Intensity
• Recreational values
• Infrastructure

Probability weighted average of the simulated fires

Suppression

Prescribed burning strategy

Results

⁻O-Prescribed burning costs

-□**-**Suppression costs

-□**-**Suppression costs

Percentage area prescribe-burned

-O-Prescribed burning costs

→ Damages

-□**-**Suppression costs

Costs plus losses

Sensitivity analysis

Optimal prescribed burning strategy sensitive to changes (+-50%) in:

- prescribed burning costs
- probabilities of fire occurrence
- urban area (damage) values
- suppression costs

– Prescribed burning costs (base)

-O-Prescribed burning costs

→ Damages

-Suppression costs

– Prescribed burning costs (base)

Prescribed burning costsPrescribed burning costs (base)

-O-Prescribed burning costs

→ Damages

-□**-**Suppression costs

Apply economic analysis to a real landscape

Real landscape:
Constraint on prescribed
burning

Synthetic landscape: Prescribed burning applied everywhere

Real landscape: Constraint on prescribed burning

X	X	X	X	X	✓	√	\	✓	\
X	X	X	X	✓	✓	✓	>	\	>
X	X	X	X	✓	\	✓	>	\	>
X	X	X	X	✓	\	✓	>	>	>
X	X	X	X	✓	✓	✓	>	✓	\
X	X	X	\	✓	✓	✓	✓	✓	✓
X	X	X	>	✓	\	✓	>	>	>
X	✓	✓	>	✓	✓	✓	>	\	>
X	X	√	\	✓	✓	✓	\	✓	✓
X	X	X	X	X	X	X	✓	✓	✓

Real landscape: Varying prescribed burning costs

Synthetic landscape: Uniform prescribed burning costs

Real landscape: Varying prescribed burning costs

						\$
		\$\$\$	\$\$\$			\$ \$
		\$\$\$	\$\$\$			\$ \$
		\$\$\$				
			\$\$	\$\$		
			\$\$	\$\$	\$\$	
			\$\$	\$\$		

Real landscape: Ignition probability model

Synthetic landscape: Random fire ignitions

- Constraint on prescribed burning
- Varying prescribed burning costs
- Ignition probability model
- Prescribed burning prioritization rule
- Real land use data
- All weather conditions (real historical data)
- Suppression as a function of fire conditions

And after this...

Dynamic optimization...

How do the results change in the long run?

What are the implications for bushfire management policies?

Conclusion

Apply economic analysis to fire management in the south-west of Western Australia

Help to make decisions for optimal levels of different strategies

Evaluate implications of changing a prescribedburning strategy