Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

2020

Wildfire suppression — an international analysis of operations,
strategy and firefighter safety

Greg Peter Penney
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Fire Science and Firefighting Commons

Recommended Citation
Penney, G. P. (2020). Wildfire suppression — an international analysis of operations, strategy and
firefighter safety. https://ro.ecu.edu.au/theses/2349

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/2349


https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1411?utm_source=ro.ecu.edu.au%2Ftheses%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/2349

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.



Wildfire suppression — an international analysis of
operations, strategy and firefighter safety

This thesis is presented for the degree of
Doctor of Philosophy

Greg Peter Penney

Supervisors: Professor Daryoush Habibi ; Dr Marcus Cattani

School of Medical & Health
Science Edith Cowan University
2020



Greg Penney PhD Thesis

| certify that this thesis does noft, to the best of my knowledge and belief:

i. incorporate without acknowledgment any material previously
submitted for a degree or diploma in any institution of higher
education;

i. contain any material previously published or written by another
person except where due reference is made in the text of this
thesis; or

ii. contain any defamatory material.

Greg Penney



Greg Penney PhD Thesis

List of publications

1. Penney, G., Habibi, D., Cattani, M. (2020). The Handbook of
Wildfire Engineering. Bushfire & Natural Hazards CRC, Melbourne,
Victoria. ISBN: 978-0-6482756-8-8

2. Penney, G., Habibi, D., Cattani, M. (2019). Firefighter tenability and
its influence on siege wildfire suppression. Fire Safety Journal, 106,
pp38-51, DOI: 10.1016/].firesaf.2019.03.012

3. Penney, G., Habibi, D., Cattani, M., Carter, M. (2019). Calculation
of Critical Water Flow Rates for Wildfire Suppression. Fire, 2 (3), 1-12,
DOI: doi:10.3390/fire2010003

4. Penney, G., Habibi, D., Cattani, M. (2020). RUIM - a fire safety
engineering model for Rural Urban Interface firefighter taskforce
deployment. Fire Safety Journal. 113, DOI:
10.1016/].firesaf.2020.102986

5. Penney, G., Habibi, D., Cattani, M. (in press). Analysis of vehicle
protection systems and firefighter tenability during entrapment and

burnover: performance standards to save lives. Fire Safety Journal

This research was supported by an Australian Government Research Training

Program (RTP) Scholarship



Greg Penney PhD Thesis

Abstract

Wildfire suppression remains an inherently dangerous yet increasingly
frequent task for fire services throughout Australia and the world. Each year
firefighters from career and volunteer agencies respond to wildfires that
impact the urban interface. When such an event occurs during a period of
intense fire behaviour the conditions are often incompatible with life for
persons either caught in the open or those seeking refuge in a vehicle. In
order to improve firefighter safety and operational effectiveness at the rural
urban interface (RUI) during landscape scale wildfires, this dissertation serves
to examine critical components of wildfire response, most notably wildfire
suppression strategies and tactics applied during a landscape scale wildfire
event and the procedures and protective systems ufilised in the event of
firefighter entfrapment and burnover.

The theme of the research is firefighter safety and suppression
effectiveness during mega-wildfire response at the rural urban interface (RUI),
also known as the wildland urban interface (WUI). Mega-wildfires are those
landscape wildfires that overwhelm firefighting resources, typically generate
their own localized weather systems, and require campaign style efforts
lasting extended durations. Wildfire events including Margaret River (2011),
and Yarloop (2016) in Western Australia, the devastating Californian and
Greece wildfires (2018) and the unprecedented wildfires throughout eastern
Australiain late 2019 / early 2020 meet this category. The RUI is the land where
towns and cities exist alongside forest and other vegetation that supports the
development of an established headfire with a quasi-steady rate of spread
(RoS) across the landscape. In such instances, firefighters are called on to
protect vulnerable communities and critical infrastructure from the ember
storms, radiant heat and flames that accompany the head fire.  In doing so,
firefighters face great personal peril. If the incorrect suppression tactics or
strategies are applied, or if wildfire behaviour suddenly changes, firefighter
entrapment and burnover resulting in significant injury or fatality remains an

all too common consequence.
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The studies not only quantify the severity of the conditions firefighters
encounter when attempting to protect life, property and the environment at
the RUI, but also find traditional wildfire suppression strategies and tactics at
the RUI need to be reexamined. Whilst the field of wildfire engineering is in
its infancy, the studies suggest its development and adoption into wildfire
suppression operations has the potentfial to improve both operational

effectiveness and firefighter safety.
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Chapter 1 - Introduction

1.1.Background to research
Each year firefighters from career and volunteer agencies across Australia
respond to wildfires that impact the rural urban interface (RUI). When such
an event occurs during a period of intense fire behaviour the conditions are
often incompatible with life for persons either caught in the open or those
seeking refuge in a vehicle. In order to improve firefighter safety and
operational effectiveness during wildfires, these studies serve to examine
critical components of wildfire response, identified through 14 years of the
lead researcher’s front line operational fire services and fire engineering
experience supported by over a decade of research in the field.
These components are the:
1. Wildfire fighting strategies and tactics applied during a landscape
scale wildfire event in the defense of the ; and
2. Procedures and protective systems utilised in the event of
entrapment and burnover.
Critically, the studies are designed to have practical benefits to fire services
and firefighters internationally, for wildfires are not suppressed by theory and

journal articles.

1.2.Thesis objectives
The research objectives of the thesis are as follows:

1. To explore the critical linkage between wildfire suppression,
firefighter safety and urban design;

2. To develop a fire engineering approach to the analysis of forest
and woodland wildfire suppression strategies that not only
compares international suppression thresholds, but considers
firefighter tenability as a key factor for determining the suitability of

suppression strategies;
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3. To provide guidance for Incident Conftrollers in relation to
firefighting strategies required to extinguish large wildfire across a
wide range of forest fuel loads, fire weather and active fire front
depths; and

4. To investigate the potential effectiveness of vehicle protection
systems (VPS) in reducing firefighter fatalities during wildfire
suppression:

a. When applied to historical firefighter entrapments and
burnovers resulting in firefighter fatality/ies from international
case studies; and

b. When applied to simulated wildfires designed to encompass
the 99th percentile of weather conditions and potential

wildfire behaviours.

1.3.Thesis structure
The thesis is presented in six chapters.

Chapter 1 is an intfroduction.

Chapter 2, The Handbook of Wildfire Engineering (the Handbook) has
been accepted for publication by the Bushfire & Natural Hazards CRC.
Each section of the Handbook is designed to build upon the previous,
providing a holistic approach to understanding vegetation and wildfire
basics before exploring evidence based wildfire suppression. The critical
linkage between wildfire suppression, firefighter safety and urban design is
also explored.  Whilst the primary focus of the Handbook is wildfire
suppression, there are many aspects applicable to urban designers and
policy makers. These are summarized at the conclusion of each section. As
an engineering handbook, it is designed to be a standalone text, written in
an appropriate manner.  The Handbook comprises of a review of
international literature relating to wildfire suppression at the RUI; details each
of the studies completed as part of the dissertation; and provides firefighters,
engineers and town planners detailed technical approaches and analysis to

enhance the resilience of communities in areas prone to wildfire impacts,
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and enhance the safety and effectiveness of wildfire suppression at the
urban interface during catastrophic wildfire conditions. In one sense, the
Handbook is in its own right, the publication of this doctoral thesis, with limited
aspects of the literature review pertaining to consideration of vegetation
structure in wildfire models, and risk management (sections 1 and 8 of the
Handbook) originating from studies as part of a MEng (Building Fire Safety &
Risk) through Victoria University in 2017 and MParamedScRes through Edith
Cowan University in 2016, and subsequent publications (Penney 2019; Penney
& Stevenson, 2019). The significant majority of the Handbook (the
infroduction; sections 1.7 and 1.8; full sections 2 to 7; section 8.6 and 8.7; and
all of section 9) are completely new works for this dissertation. None of the
studies presented in Chapters 3 to 7 of this dissertation have been previously
submitted for a degree or diploma in any institution of higher education.
Chapter 2 includes the full literature review, conclusions and directions for
future work in the field. Chapter 2 is presented as it has been submitted for
publication by the Bushfire and Natural Hazards Cooperative Research
Center, however it has been reformatted in the style of this thesis. Reference
formatting has been retained in the publication style for which the work has
been submitted. Chapters 3 to 6 have been written as manuscripts for
publication in their own right and so some repetition will be evident.
Chapter 3 examines firefighter tenability and its influence on siege wildfire
suppression through two separate studies. International literature and fire
service doctrine was reviewed to establish wildfire suppression thresholds.
The first study involved analysis of headfire RoS, fire line intensity (I) and flame
length (Lf) using McArthur and Dry Eucalypt Forest Fire Model (DEFFM)
empirical models was deterministically compared to documented
thresholds. The second study involved empirical wildfire behaviour and
radiant heat modelling completed in accordance with the methodology
detailed in AS3959 Annexure B. Radiant heat flux as a function of separation
distance at 5§ m increments from 0-100 m from the head fire front was

calculated for each scenario with the results deterministically assessed
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against the defined tenability criteria. Reference formatting has been
retained in the publication style for which the work has been submitted.

Chapter 4 investigates the prediction of water suppression requirements
and its impacts on firefighting strategies and logistics in the realm of wildfire
suppression. It provides guidance for Incident Controllers in relation to critical
water flow rates required to extinguish large wildfire across a wide range of
forest fuel loads, fire weather and active fire front depths. This is achieved
through mathematical empirical analysis of water flow rates required for
head fire suppression during simulated wildfires in forest vegetation.
Reference formatting has been retained in the publication style for which the
work has been submitted.

Chapter 5 investigates the effectiveness of wildfire vehicle suppression
systems on firefighter tenability during enfrapment and burnover. Accident
investigation reports of firefighter fatalities from wildfire entrapment and
burnovers in the USA, Australic and New Zealand between 1979 to 2020 were
studied. Additionally, wildfire simulation using two separate empirical models
was completed across a broad spectrum of forest fuel loads and up to the
99th percentile of fire weather conditions in Australia. The results were
deterministically compared to defined firefighting vehicle protection system
(VPS) fire line intensity and radiant heat flux thresholds. Reference
formatting has been retained in the publication style for which the work has
been submitted.

Chapter 6 proposes the Rural Urban Interface Model (RUIM) to assist
Incident Management Teams (IMT's) analyse critical information and
calculate required versus available safe RUI firefighter preparation time. Case
studies representative of historical wildfire events are presented to
demonstrate how the RUIM can be utilised by IMT to reduce the potential risk
of firefighter injuries and fatalities. Reference formatting has been retained

in the publication style for which the work has been submitted.
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Chapter 2 - The Handbook of Wildfire Engineering

Associated publication: Penney, G., Habibi, D., Cattani, M., Richardson, R. (in
press). The Handbook of Wildfire Engineering. Bushfire and Natural Hazards

Cooperative Research Centre, Melbourne, Victoria, Australia.

Foreward

Each year firefighters from career and volunteer agencies across Australia
respond to wildfires that impact the urban interface. When such an event
occurs during a period of intense fire behaviour the conditions are often
incompatible with life for persons either caught in the open or those seeking
refuge in a vehicle. In order to improve firefighter safety and operational
effectiveness during landscape scale wildfires, as well as providing sound
engineering guidance to improve community resilience to wildfire impacts,
this text book serves to examine critical components of wildfire response,
identified through 14 years of the lead researcher’s front line operational fire
services and fire engineering experience supported by over a decade of
research in the field. These components are the wildfire fighting strategies
and tactics applied during a landscape scale wildfire event; the procedures
and protective systems utilised in the event of burnover; operational risk
management; and wildfire resilient urban design. The Handbook of Wildfire
Engineering (the Handbook) provides firefighters, engineers and town
planners detailed technical approaches and analysis to enhance the
resilience of communities in areas prone to wildfire impacts, and enhance
the safety and effectiveness of wildfire suppression at the urban interface
during catastrophic wildfire conditions.

Each chapter of the Handbook is designed to build upon the previous,
providing a holistic approach to understanding vegetation and wildfire
basics before exploring evidence based wildfire suppression. The critical
linkage between wildfire suppression, firefighter safety and urban design is

also explored.  Whilst the primary focus of the Handbook is wildfire
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suppression, there are many aspects applicable to urban designers and
policy makers. These are summarized at the conclusion of each section.

During the preparation of this book, Australia was suffering from
catastrophic wildfires on both the west and east coasts and tragically civilians
and firefighters alike were injured or killed. The lead author was deployed as
a Strike Team Leader from Western Australic and was tasked with wildfire
suppression and property defense near Walcha, NSW. In addition to his own
local experiences in Margaret Riverin 2011 and Yarloop 2016, during the 2019
NSW deployment he witnessed first-hand the devastating effects of wildfire
on firefighters and the communities, survived near miss entfrapments and
nights spent on the fireground cut off by fire behaviour and falling trees. This
book is dedicated to all those affected by wildfires, particularly for the
firefighters of all backgrounds and jurisdictions who put themselves in harm'’s
way to protect life, property and the environment. May the guidance
provided in this book help firefighters return safely to their loved ones and

provide enhanced protection of communities in wildfire prone areas.

About the Authors

Greg Penney is the primary author.  With 14 years' experience as a career
urban and wildland firefighter / officer in Western Australia (in both
metropolitan and country commands), amongst other qualifications he holds
a MEng (Building Fire Safety & Risk), MParamedScRes (Risk), GDip Bushfire
Protection and Bachelor of Science. During the devastating
Waroona/Yarloop wildfires of 2016, Greg received a commendation for
distinguished service and outstanding actions in leading the defense of
Preston Beach facing catastrophic wildfire conditions. The Handbook builds
upon his two existing dissertations and serves as part of his current PhD by
publication “Wildfire suppression in Australian forest fuel structures at the
urban interface — a quantitative analysis.” As a subject matter expert, Greg
authored the Fire Protection Association of Australia (FPAA's) Bushfire

Protection and Design Accreditation (BPAD) Level 1 course and has

7



Greg Penney PhD Thesis
previously consulted in the field to the Western Australian branches of Master
Builders Australia (MBA), Australian Institute of Building Surveyors (AIBS),
Australian Institute of Architects (AIA) and Department of Planning (DoP). In
his current fire service role Greg leads the development and delivery of
Incident Management training, including strategic and tactical fire and
rescue response across a large range of hazards including wildfire, urban fire,
rescue and Hazardous Materials. Greg is not only a highly qualified
researcher in the field of wildfire engineering and suppression, he is also a
decorated firefighter with extensive experience in both planning and

engineering in areas prone to wildfire impacts.

Professor Daryoush Habibi is the Executive Dean of Engineering at Edith
Cowan University. Professor Habibi is a professional engineer with 27 years of
experience in industry and academia. Prior to his appointment as the Dean
of Engineering, he was the Head of School of Engineering from 2006 to 2015,
during which time he initiated and led a program of rapid growth in ECU’s
engineering portfolio, making his School the fastest growing engineering
school in the nation. His other professional experience includes Telstra
Research Laboratories, Flinders University, and Intelligent Pixels Inc., where he
served as Vice-President Engineering. Professor Habibi holds the degrees of
Bachelor of Engineering (Hons) and Doctor of Philosophy, both from the
University of Tasmania. He is a Fellow of Engineers Australia, and a Fellow of
the Institute of Marine Engineering, Science and Technology. Professor
Habibi is one of Greg's PhD supervisors and is credited for his review and

contribution to the Handbook.

Dr Marcus Cattani is a Senior Lecturer in Occupational Health and Safety
at Edith Cowan University. Dr. Marcus Cattani has worked as an academic,
occupational hygienist, HSE Manager and consultant in the chemical,
manufacturing, engineering and resources industries since 1988. Marcus is
passionate about improving the management of injury risk to an acceptable

level, and assisting organisations develop the risk management partnerships
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required to achieve fthis. Dr. Cattani's research focusses on the
development of educational materials to assist organisations understand
and manage risk, and, the development of processes to measure risk. Marcus
is the Chair of the WA Branch of the Safety Institute of Australia, a member of
the ECU Sustainability in Education Committee, attends the Chamber of
Minerals and Energy OSH Committee, sits on the ECU Vice Chancellors HSE
Awards Committee, and the School OHS Committee. Dr Cattani is one of
Greg's PhD supervisors and is credited for his review and contribution to the
Handbook.

Dr Steven Richardson contributed to Section 3 — Modelling wildfire radiant
heat flux, and is credited with the alternate view factor equations to AS3959.
Steven Richardson is a Senior Lecturer at Edith Cowan University. He
completed a PhD in Applied Mathematics in 2007 at The University of Western
Australia. His research interests are broadly in mathematical modelling,
having been involved in projects related to optimal control, asset

management, bush fires, traffic, aviation and optics.

Section 1 - Wildfire fuels

Candidature note: Section 1 — Wildfire fuels, subsections 1.1 to 1.6 are
declared as originally being submitted as part of the lead author’'s MEng

dissertation, subsequently published in Penney and Stevenson (2019).

1.1.Intfroduction

For frontline firefighters, fire behaviour specialists and Incident
Management Teams alike, understanding how vegetation type and
structure affects wildfire behaviour is critical to the planning and execution
of safe and successful suppression strategies. Just as important is the
understanding of how vegetation is represented in the empirical and physics
based models used to predict wildfire spread. During mega-wildfires that

occur in catastrophic fire weather conditions, wildfire behaviour through
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vegetation of even moderate density may be near impossible to suppress.
Conversely, over or under representing fuel structure and density when
completing wildfire behaviour predictions may result in fire behaviour being
incorrectly quantified and inappropriate suppression strategies being
recommended.

For urban planners and decision makers reviewing planning applications
at the Rural Urban Interface, including those using AS3959 Construction of
buildings in bushfire prone areas (SAl Global, 2018) and the relevant bushfire
planning guidelines in each jurisdiction, it is equally as important to
understand how vegetation contributes to wildfire behaviour. When
considering the benefits and costs of development in Bushfire Prone Areas,
misunderstanding the vegetation related limitations and inherent
assumptions of Deemed To Satisfy (DTS) or simplified planning / construction
standards and guidelines can have significant and costly impacts.  Whilst
under calculating wildfire behaviour and impacts may result in avoidable loss
of life (of both the public and the firefighters who defend them) and property,
inappropriate identification of fuel structures and resultant calculation of
potential wildfire behaviour can stifle safe and appropriate development
and lead to unnecessary expenditure of potentially hundreds of thousands
of dollars in over engineering and redundant infrastructure.

This section explores how vegetation structure not only contributes to
wildfire behaviour, but also how it is represented in the models used to predict
it on both the fireground and in the urban planning context. It should be
considered the infroductory preparation for firefighters as it represents the first

step in “knowing the enemy”.

1.2.Vegetation structure

Wildfire fuel is the vegetation consumed by a fire burning in vegetation
regardless of the size of the fire itself. The term wildfire fuel applies to
vegetation involved in a 10m2 fire in the same manner as the vegetation

involved in a 100,000m2 wildfire.  Often referred to as fuel load, wildfire fuel
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is defined by its physical structure and density. The extent to which fuel load
needs to be defined is dependent on the model used to predict wildfire
behaviour. In order to demystify the concept of wildfire fuels this section first
discusses the concept of fuel load and subsequently discusses how this is
considered within common empirical and physics based wildfire models.
Understanding the classification of wildfire fuels and how they are
represented in wildfire modelling is the first stage of interpreting modelling
outputs and their application in assessing the suitability of wildfire suppression

strategies, construction requirements and land use planning decisions.

Canopy

\

Total fuel load

Understory fuel load
\

Surface fuel

S e

Figure 1.1: Fuel load by strata

As detailed in Figure 1.1, four main fuel strata layers and the bark layer are
considered (Hines et al., 2010; Gould et al., 2007) when describing wildfire
fuels. These are canopy; elevated; near-surface; and surface fuels as well
as the bark. The height of each layer is not considered in the forest,

woodland or grass fuel empirical models of Australion Standard 3959 -
11
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Construction of buildings in bushfire-prone areas (subsequently referred to as
AS3959)1 but is relevant for heath or scrub fuels and the empirical model of
(Gould et al., 2007). Each layer and description are provided in the list
below:

1. Canopy fuel is contained in the forest crown. The crown
encompasses the leaves and fine twigs of the tallest layer of trees
in a forest or woodland. Crown involvement may lead to erratic
and extreme fire behaviour and contributes to spotting distances.

2. Elevated fuel includes shrubs, scrub, and juvenile understory plants
up to 2-3m in height, however, canopy of heights less than 4m can
be included when there is no identifiable separation between the
canopy and lower shrubs. The individual fuel components
generally have an upright orientation and may be highly variable
in ground coverage. Elevated fuels influence the flame height and
rate of spread of a fire whilst also contributing to crown
involvement by providing vertical fuel structure.

3. Near-surface fuels include grasses, low shrubs, and heath,
sometimes containing suspended components of leaves, bark,
and twigs. This layer can vary from a few centimeters to up to 0.6m
in height. Near-surface fuel components include a mixture of
orientations from horizontal to vertical. This layer may be confinuous
or have large gaps in ground coverage and influences both the
rate of spread of a fire and flame height.

4. Surface fuel includes leaves, twigs, and bark on the forest floor.

Surface fuel (or litter) components are generally horizontally

I Infroduced after the devastating 2009 Victorian Bushfires, AS3959 not only
details the construction enhancements to the Buliding Code of Australia in
order to enhance a dwelling’s resilience to wildfire impacts, it also details the
methodology and equations for calculating wildfire radiant heat flux across
all Australion vegetation structures. Bushfire is the Australian colloquial

equivalent of the term ‘wildfire’.
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layered. Surface fuel usually contributes the greatest to fuel
quantity and includes the partly decomposed fuel (duff) on the soll
surface. This fuel layer influences the rate of spread of a fire and
flame depth as well as contributing to the establisnment of a fire
post initial ignition.

5. Bark fuel is the flammable bark on free tfrunks and upper branches
that contributes to transference of surface fires info the canopy,

embers and firebrands, and subsequent spoft fires.

The consideration of Vegetation Height is only considered in the empirical
models of shrubland, scrub and heath fuel structures and the dry eucalypt
forest fire model (DEFFM) of Gould et al. (2007). The effects of vegetation
height on fire line intensity and flame length are discussed in the following
section of thisreport. For treed structures, whilst vegetation height has some
bearing on the deemed fuel loads assigned within AS3959, it is not considered
in the empirical model itself. For grasslands structure, the effect of
vegetation height is not considered in any form in AS3959.

The “Framework for an Australian fuel classification to support wildfire
management” (Hollis et al., 2015) provides enhanced taxonomy for fuel
classification with greater emphasis on fuel attributes (composition,
geometry, density and physical aspects) within  each stratum.
Unfortunately the corresponding fuel load data sets and attributes for each
stratum remain the subject of potential future research. The full potential of
the framework may also be limited by empirical wildfire models which
consider binominal fuel structure (understory and total) as opposed to
incorporating the detailed fuel load data presented by (Hollis et al., 2015).

Appropriate definition and consideration of wildfire fuel is essential as it
directly affects calculated wildfire outputs including head fire rate of spread,
fire line intensity, flame height and radiant heat outputs. The manner and
detail with which wildfire fuel is considered is largely dependent on the model
applied. The forward Rate of Spread (RoS) and intensity of an active front

of a fire, known as the head fire, is dependent on the fuel available for
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consumption in the active flaming front (Alexander, 1982; Alexander & Cruz,
2016). This is incorporated into existing empirical wildfire models of AS3959
through the consideration of available fuels within a Tha assessment areq,
representative of the active fire area directly behind the head fire. Typically
driven by wind direction, the head fire is the main component of a wildfire
contributing to the RoS and fire behaviour intensity. Subsequently, it is the
focus when calculating radiant heat flux for the purposes of determining the
appropriate standard of bushfire resilient residential construction in AS3959.
In landscape scale wildfire scenarios, being those greater than 1ha, the Tha
area of assessment falls within the greater active fire area, whilst in sub-
landscape scale wildfire scenarios the active fire area instead falls within the

Tha assessment area. This is illustrated in Figure 1.2.

Wind direction
Wind direction
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é Assessmen t area

Flank

Active fire
shape

. \
Finger \ —
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Assessment area
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4d fire
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Head fire width =

(W)

(a) (o)

Figure 1.2. (a) Landscape scale wildfire scenario; and (b) sub-landscape scale wildfire
scenario.

1.3.Consideration of wildfire fuel in empirical models
Wildfire fuels are represented in empirical models through numerical inputs
in wildfire behaviour equations including Rate of Spread (RoS), fire line

intensity () and flame length (Lf). AS3959 (cB3) states the appropriate surface
14
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(understory) fuel load (w) and overall fuel load (W) must be determined and
that “both the understory and the canopy should be considered in the
assessment. The rate of spread for forest fires should be determined using the
understory fuel loads. Flame heights should be determined on the basis of
both the combined understory and canopy fuels (overall fuel loads) for forest
fires.” Further, AS3959 (c1.5.27) defines the understory as “the vegetation
beneath the overstory” whilst AS3959 (c1.5.20) defines the overstory as “the
canopy, being the tallest stratum of the vegetation profile.” This two layered
classification of fuel load requires the surface fuel load to also incorporate all
fuel layers below the canopy as illustrated in Figure 1.1.

Mathematically this broadly assumes that despite the complex structure
and geometry of fuel below the canopy, all fuel below the canopy will
contribute to fire behaviour as a single fuel unit, resulting in the assumption of
cell dimensions for freed fuel structures illustrated in Figure 1.33. Cell
dimensions for all other fuel structures are identified in Figure 1.4 and consider

understory and total fuel load as the same value.

Total height

Canopy

I Understory

i height
Understory A o
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Figure 1.3: Cell dimensions treed fuel sfructures
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Total height
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Figure 1.4: Cell dimensions non-treed fuel sfructures — scrub, shrub and grassland

- >
100m

This two layered mathematical simplification does not necessarily provide
true consideration of the influence of the fuel layers and their conftribution to
wildfire behaviour, especially where fires occur in small pockets of vegetation
that do not support the development of a 100m head fire (detailed in section
2.2.3 of this report). Greater consideration of the impact of wildfire fuels by
strata on wildfire behaviour is considered in Hines et al. (2010) and Gould et
al. (2007), however when applied to the models identified in AS3959, the two
layered fuel load classification requires fuel loads to be simplified back to
understory and total fuel density only. The alternative lies in developing new
empirical models that have greater consideration of fuel strata or using

physics based models discussed later in this report.

Case Study 1 — Models used in Australian Standard 3959

Despite significant variance in fuel structure between vegetation species
throughout Australia, only four empirical models are suggested in AS3959 to
quantify wildfire behaviour. These empirical approaches consist of a wildfire
behaviour model enabling calculation of the physical parameters of wildfire
behaviour (each model unique to the classification of vegetation structure);
and separate view factor model, otherwise known as configuration factor,
which details the calculation of the receiving body’s resultant radiant heat
flux (the same view factor model is used regardless of vegetation structure

and resultant fire behaviour). Each of these models assume that all wildfire
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has attained a quasi-steady rate of spread (RoS) and are of landscape

proportions.

The six wildfire behaviour models detailed in AS3959 are:

1. Noble et al (1980) used for all treed fuel structures subsequently
classified as Group A Forest, Group B Woodland and Group F
Rainforest;

2. Cruz et al (2013) shrub, scrub and heath vegetation structures
subsequently classified as Group C Shrub, D Scrub and E
Mallee/Mulga;

3. Purton, (1982) for grassland fuel structures subsequently classified as
Group G Grassland;

4. Marsden-Smedley et al (1995) for Tussock Moorland subsequently

classified as Group H Grassland specific to Tasmania.

Alternate models that may be also be suitable are:
1. Forest & Woodlands - Dry Eucalypt Forest Fire Model or DEFFM

(Gould et al, 2007);

2. Anderson et al (2015) for scrub and heath vegetation structures;
and

3. Cheney et al (1998) for various vegetation within the identified

Rangelands geographical areas

The empirical models are reliant on prescribed fuel load densities measured
in tonnes per hectare which equates to large cell sizes of a minimum Tha land
area (fuel height may vary). Further, AS3959 prescribes set fuel load
densities for each vegetation structure regardless of the actual geometry of
the vegetation involved in the wildfire or the amount of vegetation
consumed during the fire scenario. This results in fires burning through small
areas of vegetation being modelled as landscape scale fires as opposed to
scenario specific heat release rates that consider the geometry and volume
of the fuel consumed. Subsequently the use of landscape scale models

detailed in AS3959 for predicting sub-landscape scale fires (road reserves,
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verges, landscaped gardens, vegetation adjacent to rivers etc.) or where
there is restricted fire run potential, limited fuel loads are consumed or
substantial boundary walls are present, may not be appropriate as currently
applied and may significantly over estimate radiant heat flux.

Defining fuel load and structure is perhaps the most critical input of existing
empirical models. It not only determines which mathematical model is
applied, each model being specific to a broad vegetation type (AS3959;
Noble, Bary & Gill, 1980; Catchpole et al, 1998; Marsden-Smedley &
Catchpole, 1995), but when used for determining construction standards for
buildings in wildfire prone areas, it also determines which prescribed fuel load
is assigned. The vegetation descriptors with fuel load and fire behaviour

model are detailed in Table 1.1.

Table 1.1. Vegetation descriptors with fuel load and fire behaviour model (adapted from
AS3959, Table 2.3).

Low open forest
tall scrubs or grass).

o Typically dominated by
eucalypts.

eTrees 10-30m in height at
maturity;

Pine plantation e Generally comprising Pinus
species or other softwood

species, planted as a single

) ) Vegetation Vegetation Type Description Assigned
Fire Behaviour
Classification fuel load
Model
(t/ha)
e Trees over 30m high;
¢ 30-70% foliage cover (may
include understory ranging
Tall open forest from rainforest and tree ferns to
Tall woodland low trees and tall shrubs);
¢ Found in areas of high reliable
rainfall. Typically dominated by
eucalypfts.
Noble et al/ e Trees 10-30m high;
Note: DEFFM is also A ¢ 30-70% foliage cover (may | w=25
suitable as an Forest include understory of | W=35
) Open forest
alternative sclerophyllous low frees and
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species for the production of
timber.

e Trees 10-30m high;
e 30-70% foliage cover (may

include understory of
Woodland

sclerophyllous low frees and
Open woodland

tall scrubs or grass).
e Typically dominated by
eucalypfts.

e Low frees and shrubs 2-10m
high;

B e Foliage cover less than 10%. w=15
Noble et al / Woodland e Dominated by eucalypts and | W =25

Note: DEFFM is also Acacia. Often have a grassy
suitable as an Low woodland understory or low shrubs.
alternative Low open woodland Acacias and Casuarina

Open shrubland woodlands grade fo Atriplex
shrublands in the arid and
semi-arid zones;

e Low open woodland is
classified on the basis of the
understory present.

e Found in wet areas and/or
areas affected by poor sail
ferfility or shallow soils.

e Shrubs 1-2m  high often

comprising Banksia, Acacia,
Closed heath

Open heath

Hakea and Grevilea.
e Wet heaths occur in sands
adjoining dunes of the littoral
C (shore) zone. Montane heaths | w=15
Catchpole et al
Shrubland occur on shallow or water| W=25
logged soils.
e Shrubs <2m high;

e greater than 30% foliage

cover.
Low shrubland e Understory may  contain
grasses. Acacia and
Casuarina often dominant in
the arid and semi-arid zones.

5 e Found in wet areas and/or o
W:
Catchpole et al Closed scrub areas affected by poor solil
Scrub N . W =25
fertility or shallow soils;
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¢ >30% foliage cover.

e Dry heaths occur in rocky
areas.

e Shrubs >2m high.

e Typical of coastal wetlands
and tall heaths

e Shrubs greater than 2m high;
Open scrub e 10-30% foliage cover with a
mixed species combination

e Vegetation dominated by
shrubs (especially eucalypfts
and acacias) with a multi-

. stemmed habit;

Only occurs as a significant
vegetation type in Tasmania.

e usually greater than 2m in w =
Catchpole et al Mallee / Tall shrubland .
height; W=
Malga .
e <30% foliage cover.
e Understory of widespread to
dense low shrubs (acacias) or
sparse grasses.
Tall closed forest e >90% foliage cover;
Closed forest e understory may contain a
Noble et al F ) . w=10
) Low closed forest large number of species with a
Rainforest . . W=12
variety of heights;
¢ Not dominated by eucalypts
purt G All forms, including situations with shrubs and trees, if the | w=4.5
urton
Grassland overstory foliage coveris less than 10% W =45
Tussock Moorland e All forms of vegetation where
the overstory is dominated by
Marsden-Smedley H . w=17
the species Buftongrass.
et al Grassland W=17

Some of the confusion regarding wildfire fuel can be attributed to the
multiple inconsistencies between the qualitative and pictorial descriptions of
the classifications of vegetation in AS3959 and the quantified inputs such as
vegetation height and foliage cover used in the calculations (AS3959; DOP,
2016; FPA, 2016). Several of the more significant inconsistencies that cause

confusion regarding wildfire fuels are summarised in Table 1.2.
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Table 1.2: Discrepancies of fuel classification in AS3959

Discrepancy in Fuel Classification in AS3959

Effect on Empirical Modelling

Table 2.3, 23 and 24

classification of treed vegetation structures on

Figures requires
the basis of foliage cover (defined as the
proportion of the ground that would be shaded
by foliage when the sun is shining directly
overhead, expressed as a percentage for each
stratum or identifiable
[AS3959, c1.5.17]):
e 30-70% for Group A Forest
e 10-30% for Group B Woodland
e 10-30% for Group B Open Woodland
(subseqguently classified on the basis

layer of vegetation

of the understory vegetation)

Table B2 identifies the same amount of wildfire
fuel above the surface strata (being 10t/ha) for
both Forest and Woodland vegetation structures
regardless of foliage cover.

Figure 2.4(B) illustrates Open Woodland as being
a single tree in a field, however the suggested
foliage cover may be interpreted as 30%, the

same as that required for Group A Forest.

Figures 2.4(A) and 2.4(B) illustrate significant
overlap between understory fuel structures as
densities with an almost total absence of

understory fuel for the Low Open Forest

classification.

Table 2.3 Note 2 states "Overstorys of open

woodland, low open woodland, ftall open
shrubland and low open shrubland should be
classified to the vegetation type on the basis of
their understorys; others to be classified on the

basis of their overstorys.”

This discrepancy can result in incorrect surface
fuel load inputs being utilised between Group A
(25t/ha), Group B (15t/ha) and Group F (10t/ha)

vegetation structures.

In the case of confusion between Group B
Woodlands and Group B Open Woodlands, the
incorrect empirical model being applied for
Group C Shrubland, Group D Scrub or Group G

Grassland understories.

These discrepancies can ultimately result in
significantly different fire engineering outputs
including flame angle, view factor and radiant

heat flux as shown in figures 1.4 to 1.6.

Table 2.3 the

qualitative description and classification as

“Tall woodland” has same

Group A Forest resulting in wildfire modelling

This discrepancy can result in incorrect surface
fuel load for Group B Woodland (15t/ha) as
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reflective of Group A Forest fire behaviour as
opposed to reflecting the reduced understory

fuel structure that defines ‘woodland’ wildfire

opposed to the greater Group A Forest (25t/ha)
being applied.

fuels. These discrepancies can ultimately result in
significantly different fire engineering outputs as
shown in figures 1.4 to 1.6.

Table 2.3, Figures 2.3 and 2.4 requires | This discrepancy can result in incorrect surface

classification of all freed vegetation greater than
10m in height and a foliage cover in excess of
90% to be classified as Group F Rainforest

regardless of climate or species.

fuel load inputs being utilised between Group A
(25t/ha), Group B (15t/ha) and Group F (10t/ha)

vegetation structures.

Wildfire behaviour through dense Eucalypt forest
matching the descriptions in AS3959 Table 2.3
and AS3959 Figures 2.3 and 2.4 will consume
and  result

significant  fuels in the highest

magnitude of wildfire intensity.

Empirical modelling using the Group F Rainforest
fuel loads will significantly underestimate radiant
heat flux where freed fuel structures are dense

and significant.

For modelling the effect is variable fuel load

inputs which result in significantly different

engineering outputs as shown in figures 1.4 fo 1.6.

Table 2.3 describes Group C Shrubland as shrub
vegetation less than 2m in height potentially with
foliage cover greater than 30% whilst Group D
Scrub is identified as shrub vegetation greater
than 2m in height, potentially with foliage cover

greater than 30%

Table B2 defines the vegetation height for Group
C Shrubland as 1.5m and the vegetation height
for Group D Scrub and Group E Mallee Mulga as
3m. B2 identifies the 'fuel type' for all three

classifications as “Shrub and Heath.”

The variance in qualitative descriptions of
vegetation height from that of the empirical
inputs result in potential discrepancy between
vegetation classification and calculated wildfire

behaviour. The discrepancy in fuel

type
description between “shrub and “heath” may

introduce further confusion.

This inconsistancy can result in incorrect surface
fuel load inputs being utilised between Group C
(15t/ha), Group D (25t/ha) vegetation structures.
It can also result in the incorrect vegetation

height input being used.

These inconsistencies can ultimately result in

significantly different fire engineering outputs as

shown in figures 1.7 to 1.10.
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Using Figures 1.50-1.5b as a case scenario, the ambiguity surrounding fuel
classification using the qualitative descriptions in AS3959 become apparent.
The vegetation structure in the case scenario could arguably be considered
Group A - Low Open Forest or Group B — Open Woodland as the foliage
cover, defined as the “proportion of the ground that would be shaded by
foliage when the sun is directly overhead, expressed as a percentage of
each stratum or identifiable layer of vegetation” (AS3959, c1.5.17), exceeds
30%. Further, the surface and near surface fuel layer do not clearly fit the
description for either category and arguably does not satisfy the definition of
minimal fuel condition, defined as “insufficient fuel to significantly increase
the severity of wildfire attack (recognizable as short-cropped grass for
example, to a nominal height of 100mm)” (AS3959, c2.2.3.2(f)) required to be
considered low threat vegetation and excluded from consideration for
calculation of wildfire impacts in accordance with AS3959.

The effect of these variable fuel load inputs for the scenario examined
results in significantly different wildfire outputs as shown in Figures 4to 10. The
outputs detailed were calculated using the detailed methodology detailed
in AS3959; assuming flat site and effective slopes; and standard inputs of

AS3959 appropriate to each fuel classification.

Figure 1.5. (a) Case study; and (b) Case study surface fuel.
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In accordance with the vegetation descriptions provided in AS3959 the
vegetative fuel in the case study could be qualitatively classified as being
Group A Forest, Group B Woodland or Group F Rainforest (being low closed
forest) depending on the individual assessor.  Whilst the same empirical
model (McArthur) is applied to each of these vegetation structures, the
associated assigned fuel loads vary significantly.  Aresult is the fire behaviour
outputs and subsequent radiation modelling outputs are vastly different as
illustrated in Figures 6-12.  Subsequently, the associated construction
responses required under the Building Code of Australia (ABCB, 2015) for a
typical residence could vary by over a hundred thousand dollars (FPA, 2016)
and result in significant over engineering in situations where landscape scale
fire behaviour is not possible. These inconsistencies also facilitate the
opportunity for consultants and home owners alike to underestimate
potential wildfire impact in order to reduce construction costs, leaving houses
potentially vulnerable where landscape scale wildfire impacts occur. This
subsequently highlights the need for comprehensive understanding of
wildfire engineering with greater analysis of fuel loads where landscape scale
fire behaviour is not possible, typically within the urban and peri-urban areaq,
as opposed to blind reliance on the broad qualitative descriptions and
simplified radiant heat flux tables detailed in AS3959.
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Figure 1.6. Flame angle as a function of separation from head fire comparison — freed fuel

structures
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Figure 1.7. View factor as a function of separation from head fire comparison — treed fuel

structures
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Class A Forest —— Class B Woodland —— Class F Rainforest
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Figure 1.8. Radiant heat flux as a function of separation from head fire comparison — freed
fuel structures
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Figure 1.9. Radiant heat flux as a function of separation from head fire comparison —

Woodland and open woodland sfructures (open woodland modelling based on the
understory structure)
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—— Class C Shrubland ——— Class D Scrub ——— Class G Grassland
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Figure 1.10. Flame angle as a function of separation from head fire comparison — shrub,

scrub and grassland structures
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Figure 1.11. View factor as a function of separation from head fire comparison — shrub,

scrub and grassland
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Figure 1.12. Radiant heat flux as a function of separation from head fire comparison —
shrub, scrub and grassland

Case Study 2 — Project Vesta and Hazard Ratings

Two of the aims of Project Vesta, perhaps the most significant research
project into fire behaviour through dry eucalypt forest of recent times, were
to (Gould et al., 2007, piii):

i. develop new algorithms describing the relationship between
fire spread 