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Preface 

 

The 84 study sites in this thesis form part of the long-term monitoring project Fire 

In Temperate Forest Landscapes, by Dr Grant Palmer of Federation University.   

Part of this thesis is an investigation into bird responses to prescribed burns of 

different severities.  This section was structured as a Before-After Control-Impact 

study.  Field work for this thesis began in the winter of 2012, after prescribed 

burns were conducted on sites in March/April of the same year.  Dr Palmer had 

monitored the sites in the spring/summer of 2010, and his dataset was used as 

the pre-burn data for modelling. 

This thesis has many references to individual avian species.  The scientific 

names for all birds observed in the Heathy Dry Forests are listed in Table 3.2.  

Throughout the thesis, birds are referred to by common names. 

The Heathy Dry Forest sites reviewed in this thesis have a maximum 30% 

canopy.  Therefore, comparisons are made between the sites that form this 

research and ‘woodland’. 

All photos within this thesis were taken by me, unless otherwise acknowledged. 
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Abstract 

Globally, forest birds are under pressure, from agriculture and urban development 

fragmenting the landscape.  Adding to these pressures, changes in the patterns 

of global climate drivers give rise to an increase in the frequency of extreme 

weather events.  In Victoria, Australia, changing weather conditions are resulting 

in increases in the frequency and extent of bushfires.  Furthermore, prescribed 

burning is applied to the landscape in attempts to not only ameliorate the impacts 

from bushfire, but as part of a ‘pyrodiversity begets biodiversity’ protocol.   These 

pressures all impact birds by reducing resources for: food, nesting and protection 

from predators.  This thesis investigated bird responses to fire in the Heathy Dry 

Forests of Victoria, against variables of time-since-fire and fire frequency.  Bird 

responses were modelled in terms of: community, foraging guilds and individual 

species.  As a community, birds showed a resilience to both time since fire and 

fire frequency.  Responses by foraging guilds and individual species highlighted 

some different responses.  The common species from each foraging guild 

showed responses that broadly represent their guild.  This thesis highlighted that 

an effective tool in adaptive management is to predict the trends of our common 

forest birds, as surrogates for entire bird communities, not just for fire responses, 

but for a broader reflection on the health of the landscape. The modelling of one 

species, the Laughing Kookaburra, showed a response to both time since fire and 

fire frequency, with a reduced abundance in post-fire new-growth vegetation.  As 

this species is noted as being in decline down the east coast of Australia, it is 

flagged in this thesis as a species of concern.  Further, this thesis investigated 

alpha and beta responses by the forest birds to prescribed burns of different 

severities.  Results suggest that forest birds show little response to small 
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prescribed burns in the landscape, regardless of severity.  This may be a result of 

Heathy Dry Forests’ rapid regeneration post-fire.  However, one species that 

exhibits site fidelity, the White-throated Treecreeper, left areas impacted by high 

severity prescribed burns.  The White-throated Treecreeper’s response flagged 

the importance of tree hollows being maintained in the landscape, essential for 

the species that require hollows for roosting and nesting. 
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Plate 1  ‘Black Saturday’ bushfire, Victoria, Australia. February 2009. 

 

Source:  AAP  
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1 Introduction 

Generations of biologists, ecologists, ornithologists and nature-lovers have been 

inspired by the forest birds of the south-east region of Australia.  However, in the 

years since European settlement, human needs in this region have driven 

landscape-changes on an immense scale.  These changes have impacted avian 

assemblages to such a degree that many reports of avian species’ declines have 

been published.  In fact, these forests contain some of our most recognized avian 

species.  Yet, research on these birds lags well behind the rate at which the 

forest landscape is changing form and diminishing in area and extent. 

This is a study of bird responses to aspects of the fire regime, in Heathy Dry 

Forests of Victoria, Australia.  The central region of Victoria is a highly 

fragmented landscape, and subject to a drying climate over many decades. So, 

factors other than fire may impact bird responses. These forests represent an 

important case study to consider multiple drivers of biodiversity decline 

worldwide, with a focus on informing avian conservation in these, the most 

flammable forests on Earth.  

1.1 Birds in decline in temperate regions  

1.1.1 A global biodiversity crisis 

Currently, there is a wave of anthropogenic biodiversity loss (Dirzo et al., 2014), 

with unprecedented rates of extinction being documented (Ceballos et al., 2015, 

McCallum, 2015, Ceballos et al., 2017).  The recent total extinctions of vertebrate 

species, if at the same rate as that prevailing over the last 2 million years, should 

have taken approximately 10,000 years, not one century (Ceballos et al., 2015). 
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Hundreds of species are being driven to extinction every year (Dirzo et al., 2014, 

Maxwell et al., 2016, Young et al., 2016, Ceballos et al., 2017), with major 

declines in temperate regions (Ceballos et al., 2017).  While some authors have, 

within the last two decades, suggested a ‘sixth mass extinction’ is inevitable 

(Leakey, 1996, Thomas, 2007); this is now an accepted concept (Barnosky et al., 

2011, Dirzo et al., 2014, McCallum, 2015, Ceballos et al., 2017).   

‘Global defaunation’, the extinction of faunal species and populations and the 

decline in abundance of individuals within populations (Young et al., 2016), is a 

pervasive component of the ‘sixth mass extinction’ (Dirzo et al., 2014).  

Predictions on extinction rates can vary, based on different analysis methods, 

and because, for some species, data may be deficient  (McCallum, 2015, 

Ceballos et al., 2017).  Nonetheless, with the large percentage of decreasing 

species in temperate latitudes, it is clear the imperative is to halt the declining 

trend.  This is a challenging issue when population extirpation can occur without 

there being clear evidence flagging that the entire species may be retracting in 

range; i.e. a species may be extinct in one location, however abundant in another 

(Hobbs and Mooney, 1998). 

1.1.2 Temperate forests under pressure  

Some of the most significant large-scale land conversion from forests and 

woodlands to agricultural and urban landscapes can be seen in the temperate 

regions around the globe (Hobbs and Yates, 2000, Majer et al., 2010, Sleeter et 

al., 2012).  Contemporary land conversion continues in some regions unabated, 

driven largely by human population growth and expansion (Sleeter et al., 2012).  

As modifications continue across landscapes, the challenges are to manage for 
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species’ protection, when the focus in a region may be to accommodate an 

expanding human population.  

Following European settlement, large tracts of the fertile regions of southern 

Australia were converted to pastures, or cleared for crops or livestock grazing 

(Prober and Thiele, 1995).  Prior to European settlement, 32% of Victoria 

consisted of temperate woodlands, however by 1987, 92% of Victoria’s 

woodlands had been cleared (Lunt and Bennett, 2000),  resulting in threats to 

both vegetation persistence (Reid and Landsberg, 2000, Clarke, 2000) and 

arthropod abundances (Abensperg-Traun M. et al., 2000, Majer et al., 2000).    

The extent to which this land-use change occurred has resulted in one of the 

most significant changes across the Australian landscape since European 

settlement (Hobbs and Yates, 2000).  These extensive modifications to the 

landscape have resulted in profound changes for birds (Bennett and Radford, 

2010).  Although birds are highly mobile and exhibit large temporal and spatial 

abundance fluctuations (MacNally, 1996, Manning et al., 2007, Lindenmayer and 

Cunningham, 2011) many species have been reported to be in severe decline in 

Australia (Recher, 1999, MacNally et al., 2009, Bennett and Watson, 2011, Ford, 

2011, Watson, 2011). These declines result from reductions to geographical 

ranges (Franklin et al., 1989) and regional extirpation (Ford et al., 2009). 

Species persist and reproduce within their ‘realized niche’ (Hutchinson, 1957); the 

total range of conditions under which a population or a species survives.  Intrinsic 

complexities arise from multiple disturbances, that occur both spatially and 

temporally.  Combining these factors, a species will only continue to survive if its 



 

1-5 

 

tolerable limits are not exceeded.  If tolerable limits for a species are exceeded, 

the result will be a shift in range or even local extirpation, or in extreme cases, 

species extinction. 

1.1.3 Avian species in decline in south-eastern Australia  

Australia’s bird taxa are slipping towards extinction (Recher, 1999, Lindenmayer, 

2007, Bennett and Watson, 2011, Ford, 2011, Szabo et al., 2012, Birdlife 

Australia, 2015, Ceballos et al., 2017).  Whilst the global Red List Index (RLI) has 

recently flagged the eastern ecoregion of Australia as being of concern (Ceballos 

et al., 2017), the National Index recognizes that the entire east coast of Australia 

is a highly diverse habitat (Birdlife Australia, 2015) and so has split the region into 

the “East Coast” and the “South-eastern Mainland”.  The 2015 State of Australia’s 

Birds report highlights that the south-eastern mainland, of predominantly eucalypt 

woodland, is a highly modified landscape and that the indices for most bird 

groups in this region have been declining since 2006.  In fact, 22 of the 86 

species listed, showed significant decreases over the reporting period, 

suggesting a pattern of concern for this group.  Birdlife Australia stress that 

further research on the south-eastern region is imperative (Birdlife Australia, 

2015).  

Twenty of the 26 bird species considered as declining species in the southern 

region of Australia are insectivorous (Watson, 2011).  As 14 of these species are 

primarily ground foragers (Razeng and Watson, 2012), landscape changes are 

critical causes of this decline.  Drought conditions greatly impact bird survival 

(MacNally et al., 2009).  Further, it has been argued that only half of Australia’s 

terrestrial birds will survive the next one hundred years if factors impacting their 
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decline are not addressed – factors that include inappropriate fire regimes 

(Recher, 1999). 

Ford et al. (2001) reviewed the reasons why so many of southern Australia’s 

woodland birds have declined.  Described as a seminal work for woodland birds 

(Bennett and Watson, 2011), this research outlines the impacts on birds from 

habitat loss, fragmentation, land degradation, competition and predation.  Authors 

noted a wide range of foraging guilds as being in decline – the granivores, 

nectarivores, raptors, ground-nesters and ground-foraging insectivores.  A 

subsequent update on this assessment is “The Action Plan for Australian Birds 

2010”, which highlights that land clearance and habitat degradation may continue 

to cause species’ declines for decades, and that fire is a threatening process 

(Garnett et al., 2011).  Whilst fires were once less frequent in a highly fragmented 

landscape (Ford et al., 2001), much has changed in recent decades in terms of 

fire weather and the fire regime.  Bushfire frequency continues to increase in 

Australia (Fairman et al., 2016) and in Victoria, fire is applied to the landscape in 

the form of prescribed burns, at a frequency greater than ever before (Teague, 

2010). 

With an increase in temperature being one of the most important factors resulting 

in an increase in bushfire activity (Flannigan et al., 2009), impacts on forest birds 

are therefore numerous and complex.  Studies have shown that an increase in 

precipitation is a crucial trigger for breeding timing (Baker, 1939, Johnston, 1954, 

James and Shugart, 1974); a drying climate therefore may result in young 

hatching at times when food supply is not at its maximum.  Under current climate 

change scenarios, southern Australian temperatures are expected to increase 1-5 
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degrees by 2070 (Commonwealth Scientific and Industrial Research 

Organization., 2007, Timbal and Jones, 2008).  This may result in species 

breeding when food supply is not optimum.  MacNally et al. (2009) showed that 

approximately two-thirds of the bird species in a highly fragmented woodland and 

forest region of central Victoria, Australia, have declined by what they argue is the 

result of a changing climate creating a marked decrease in rainfall in the region.  

They suggest that species’ decline reflects an on-going and consistent erosion to 

their resource base; decline further exacerbated by bushfires across spring and 

summer months and prescribed burns being carried out throughout the year.   

In more recent times, Ford (2011) summarized the extensive body of work and 

advancements in our understanding of the woodland bird crisis by arguing that 

the focus had shifted to one of process.  Furthermore, he suggested that to 

reverse woodland bird decline, effective management requires science based on 

a whole of landscape approach at regional and national scales.  Clearly, this shift 

of focus now must include impacts from a changing fire regime. 

Underpinning a whole of landscape approach are climate variables.  An integral 

component of climate processes that are changing, is a variation to rainfall levels. 

This has implications for birds, beyond just an adequate supply of drinking water.  

Water storage in soils that are heavily grazed, or of low-level structure (hence 

poor quality), may move from within the soil to surface reservoirs, impacting 

below-ground decomposer communities, leading to fewer ground-dwelling 

invertebrate prey for birds (Watson, 2011).  Further, not all woodland soils are the 

same, with many lacking in structure (Watson, 2011).  This is the case for the 

Heathy Dry Forests in Victoria (Cheal, 2010).  Low rainfall will therefore have 
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profound effects on invertebrates, necessary prey for insectivorous birds.  This 

renders the Heathy Dry Forests extremely sensitive to drought conditions, 

especially with the prolonged rainfall anomalies that Victoria is currently 

experiencing (Bureau of Meteorology, 2016).  In fact, recent research on 

modelling fire regime factors with faunal species and vegetation abundances in 

species distribution models, showed that the two strongest influences on the fire 

regime, for both vertebrate and plant species in the Victorian foothills, were 

rainfall and temperature (Kelly et al., 2017).  These two factors had the highest 

influence on species distributions and when modelled, sometimes showed 

marked variation in the responses of species (Kelly et al., 2017). 

This has major implications for the avifauna in the woodlands of south-eastern 

Australia.  Woodlands contain almost one-third of the threatened ecological 

communities listed under the Federal Government’s Environmental Protection 

Biodiversity Conservation Act 1999 (Lindenmayer, 2007).  With extensive land 

clearing, heavy modification and high levels of degradation within woodlands and 

forests, many woodland birds have lost much of their range in eastern Australia 

(Lindenmayer, 2007). So, climate and human driven changes to fire regimes will 

likely act as an additional threat to forest and woodland birds that are already 

impacted by large scale vegetation clearance.  

1.2 Fire as a driver of change   

1.2.1 Fire in the landscape 

Climate, along with factors such as edaphic conditions, will influence the 

distribution of vegetation species.  Following these first order controls, a second 
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order control is fire disturbance, which can homogenize the landscape and so 

create large, uniform age stands of fire-adapted vegetation (Bendix and Cowell, 

2010).  However, variations in the terrain and vegetation may lead to 

heterogeneity in a landscape (Brotons et al., 2004, Leonard et al., 2013).  As 

these factors will affect fire spread, creating different burn severities and 

intensities, heterogeneity arises even within a single fire.  Furthermore, fire can 

fragment the habitat into mosaics, due to the variations in the frequency and 

intensity of fire events (Stuart-Smith et al., 2002).   

Fire has been a common feature of many Australian biomes since possibly the 

Oligocene (Holdgate et al., 2014) and much of the continent’s contemporary flora 

and fauna exhibit adaptations to survive fire, and to persist and even flourish.  

Fire is inextricably linked to the distribution and ecology of many vegetation 

species right across the Australian landscape, in that vegetation supplies 

biomass as fire fuel (Bradstock, 2010).   

A fire will result in complex interactions, involving many factors, impacting biota.  

Effects may be both direct (smoke, temperature and heat resulting in emigration 

or mortality), and indirect (by altering the environment such that it has limited 

resources for species to persist).  Fire in the landscape may also result in species 

declining some time after the event, as a result of starvation or predation (Tilman 

et al., 1994, Whelan et al., 2010).  Here, it is the ‘fire regime’ that needs to be 

considered - the timing, size, intensity, severity and frequency of fires in a 

location, as well as the interval of time between fire events (Gill, 1975). This is 

important not just for the continuing regeneration of vegetation, but also for the 

persistence of faunal communities (Hobbs, 2010, Keith et al., 2010).  The current 
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impact of a changing fire regime on Australia’s flora and fauna is profound 

(Woinarski and Recher, 1997, Recher et al., 2009, Bowman et al., 2012, Enright 

et al., 2012, Gill, 2012, Recher and Davis Jr, 2013, Lindenmayer et al., 2014), 

with a significant cross-section of Australia’s biodiversity under threat, including 

more than fifty bird species (Lindenmayer, 2007).   

1.2.2 Changes to fire weather pushing temperate forests to tipping points 

High inter-annual variability in fire weather in Australia has been linked to climate 

drivers (Williamson et al., 2016).  Therefore, dealing with high variability in data 

when modelling creates challenges when attempting to predict seasonal patterns 

to fire weather (Williamson et al., 2016).  Nonetheless, what has been argued is 

that, across south-eastern Australia, there has been an increase in recent 

decades in the severity of weather conditions conducive to fire (Bradstock et al., 

2014).  Furthermore, there has been an increase in the frequency of mega-scale 

bushfires in Victoria (Fairman et al., 2016).   

As bushfires increase in severity and frequency, there is the risk and likelihood of 

the elimination of some vegetation species from the landscape (Bowman et al., 

2014).  As weather patterns change, ecosystems and species may be pushed to 

tolerable limits.  Laurance et al. (2011) compiled research from various authors 

on Australian ecosystems vulnerable to tipping points.  They list temperate 

eucalypt forests as particularly vulnerable.  While a changing climate will 

predispose ecosystems to tipping points, vulnerable ecosystems are being 

impacted by multiple drivers (Laurance et al., 2011) and even-though different 

drivers of species decline are often modelled and managed independently, there 

is mounting evidence that complex, synergistic effects can occur between drivers 
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of native species decline (Didham et al., 2007).  Furthermore, it is argued that 

relationships between drivers, with the combined effects of climate change, can 

result in challenges when attempting to determine causes of range decline and 

regional extinctions (Thomas et al., 2006).   

1.2.3 Determining fire history guiding understanding on climate drivers  

There is a need for long-term data on fire history to contextualize the present 

climate-fire relationship.  Recent studies have linked a positive Southern Annular 

Mode (SAM) to an increase in fire frequency, by examining charcoal deposits in 

western Tasmania from the last 1000 years and arguing for a relationship 

between fire activity and SAM, at centennial time-scales (Mariani and Fletcher, 

2016).   

The link between fire activity and SAM phases is not limited to the temperate 

forests of Tasmania. A study based on the conifer forests of Patagonia was 

based on 42 fire history sites of 600 fire-scarred trees, from which researchers 

determined that the years of widespread fire were associated with positive 

phases of SAM (Holz and Veblen, 2011).   

Combining these studies, it is now suggested that the SAM is an important driver 

of fire around the entire southern hemisphere (Mariani and Fletcher, 2016).  In 

fact, it has been found, on reconstructing an annual average SAM index since AD 

1000, that the long-term mean of the SAM index is currently at its highest positive 

value for at least the last 1000 years, and that with continued increases in 

greenhouse gases, the prediction is that SAM will move further towards positive 

phases over the next 100 years (Abram et al., 2014). 
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1.2.4 Changes to the fire regime in Mediterranean regions 

Mediterranean regions around the globe have hot summers and wet winters, the 

winter rain providing for vegetation growth, which dries out in the summer months 

to become fuel for fire.  The physiographic nature of the vegetation that persists 

in Mediterranean regions is very similar at the same latitude around the globe.  

These fire-prone landscapes can be seen in the Mediterranean Macchia, the 

South African Fynbos, the Chaparral of California and Chile, along with the 

eastern deciduous forests across the central portion of eastern North America, 

and the Kwongan and Mallee of south-west and south-eastern Australia 

respectively.  The eucalypt forests of the south-east region of Australia afford 

even greater fire risk than the Kwongan or Mallee vegetation, as, while they share 

the feature of volatile oils, they grow fast and tall. 

As global climate systems increase in variability, fire regimes change, resulting in 

complex climate-system changes impacting vegetation in Mediterranean 

landscapes around the globe (Pausas and Vallejo, 1999).  Climate drivers are 

precipitating changes to the fire regime in Australia’s south-eastern region, with 

unknown consequences on forest biodiversity (Sala et al., 2000, Gil‐tena et al., 

2009).    

Researchers assessing the complex interactions between climate, fire and the 

landscape in Mediterranean regions are faced with challenges when interpreting 

bird responses.  In the region south-west of Barcelona, the landscape is 

continually being modified by fire and changes to agricultural practices, and this 

has resulted in bird biodiversity being maintained (Brotons et al., 2004).  

Determining the impacts of a changing fire regime on birds in this landscape is 
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challenging because several factors  e.g. agricultural and urban developments as 

well as fire events, will all impact biodiversity in the region.  A North American 

symposium collectively reviewed fire across forty ecosystems in the region (Saab 

and Powell, 2005).  This research described how changes in spatial patterns and 

frequency are linked to changes in drought conditions, highlighting the 

importance of climate in explaining variations in fire frequency and extent over 

time.  Furthermore, the Mediterranean eastern and central US region have had 

both bushfire occurring, and prescribed fires applied to these regions, to restore 

and maintain oak savannas.  Therefore, a greater understanding of the fire 

regime in these regions has been flagged as imperative (Artman et al., 2005). 

A decrease in rainfall in the summer months is a primary factor predicted to 

impact Mediterranean regions around the world (Giorgi and Lionello, 2008).  

Furthermore, researchers argue that different environmental conditions along 

climate gradients will impact fire fuel moisture, hence flammability, and that fires 

will occur at different intervals and spatial scales (Kelly et al., 2017).  These 

factors combined will in turn influence vegetation growth and so impact on birds. 

It is the Mediterranean regions around the globe that will possibly experience the 

greatest impacts to levels of biodiversity, a result of substantial impacts from the 

drivers of biodiversity change (Sala et al., 2000) such as fire (Mouillot and Field, 

2005).    

1.2.5 Global climate changes and how they impact fire weather in south-eastern 
Australia 

The southern region of Australia is known as one of the most flammable places 

on earth (Adams and Attiwill, 2011), due to its unique meteorological and 
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biophysical arrangement (Teague, 2010).  Key climate drivers contribute to, and 

drive, patterns of bushfire across the region.  

Fire weather impacts aspects of the fire regime (Bradstock, 2010).  The global 

atmospheric pressures, sea surface temperatures and variation in winds, all give 

rise to bushfire weather in the south-east region of Australia.  As changes occur 

to fire weather components over both the short and long terms, then so too will 

bushfire frequency and severity rates change.  It is assumed by some 

researchers that the main driver of the fire regime is climate – in that while fire-

spread is determined by the features of the landscape, fire-size is dictated mostly 

by climate variables (Brotons et al., 2013).  

In regions of the globe where temperatures are increasing, there is an increased 

pressure on the biota, as they must adapt to changing conditions (Birdlife 

International, 2008).  In Australia, different climate forecasts all arrive at a 

collective conclusion - that the number of hot days across the country will 

increase, which will not only extend drought periods but also increase the 

frequency of high fire-danger days (Steffen et al., 2017).  Both these factors 

combined will result in an increase in bushfires in areas that have fire fuel load 

and weather conditions conducive to fire. 

1.2.6 The climate drivers in south-east Australia 

It is a challenge for researchers to create a framework that effectively identifies all 

drivers of fire in the landscape, however, Bradstock (2010) provided a conceptual 

framework to define processes that limit fire.  The model incorporates key drivers, 

as on/off switches, being the influences of biogeographic factors: 1) biomass 
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growth; 2) the availability of vegetation for burning, measured in terms of drought 

conditions altering the moisture status of vegetation; 3) ambient fire weather; and 

4) ignition, from lightning and anthropogenic sources.  Murphy et al. (2011) and 

Williamson et al. (2016) added to this framework a range of time-scales over 

which the four switches will operate, to impact the factors that are fundamental to 

the fire regime.  Over-arching this, in south-east Australia, four key climate drivers 

can be added to the framework: the Pacific Decadal Oscillation (PDO), the El 

Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the 

Southern Annular Mode (SAM) (Fig 1.1). 

These four drivers, driven by winds and temperature variations that impact levels 

of rainfall, alter in frequency and intensity – and across time-scales.  They are 

also the key elements to consider when attempting to predict future bushfire 

patterns across this region. 
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Figure 1.1  Four climate drivers impacting the south-eastern region of Australia, over time. 
Framework of four switches taken from Bradstock (2010), time-scales and factors impacted from Murphy et al., (2011). 
Four climate drivers impacting the region:  Pacific Decadal Oscillation (Trenberth, 2014), Southern Annular Mode, Indian Ocean Dipole and the El Niño Southern 
Oscillation (Bureau of Meteorology, 2017).  
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The complexities and the inter-connectedness of these four climate drivers can 

be illustrated with weather events in the south-east Australian region over recent 

years.  Compounding the effects of El Niño during the Millennium Drought (1996 

– 2010) (Gergis et al., 2012), was a positive SAM, which was in place for large 

parts of the years 1997 – 2010 (Bureau of Meteorology, 2017).  In an area where 

the endemism of many flora and fauna taxa is high, the continued years of rainfall 

deficiencies resulted in many species being at risk because of restrictions to both 

geographical and climatic range (Hennessy et al., 2007).   

Rains in 2010 and 2011 marked the end of the Millennium Drought across 

Australia, however Victoria can be seen to be on a drying trend that has 

continued, from the 1970’s through to 2016 (Fig 1.2), with rainfall anomalies in 

the years since 2010 (Fig 1.3).   

 

Figure 1.2 Annual rainfall Victoria, Australia (1900-2016). 

Source:  Bureau of Meteorology (2017). 
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Figure 1.3 Rainfall anomalies Victoria, Australia (1900-2016).  

Source:  Bureau of Meteorology (2017). 
 

In 2010 a negative IOD operated in concert with an ENSO La Niña phase.  

Warmer than average sea surface temperatures in the Indian Ocean, plus a 

break in the El Niño drought, resulted in increased moisture moving across 

Australia.  A negative IOD was seen again more recently in 2016, accompanied 

by an El Niño phase until May 2016, which was then followed by an ENSO 

neutral phase through to December 2016 (Bureau of Meteorology, 2017).  As 

2016 progressed, there was a shift in Australia’s climate from ‘warm/dry’ to 

‘cool/wet’ conditions.  This shift resulted in well above average rainfall falling on 

most of the east coast of Australia later in the year (Bureau of Meteorology, 

2017).  However, even though the 2016 rains extended from the north-western 

region of western Australia, across the central region of Australia to the east, and 
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into South Australia, parts of the western and central regions of Victoria received 

little of this well-above average rainfall.  The weather system that may have been 

impacting this is the SAM.  The poleward shift of this wind-stream resulted in 

drying across the southern parts of mainland Australia and Tasmania.  As the 

SAM has switched between positive and negative phases over the twelve month 

period from mid-2016 to mid-2017 (Bureau of Meteorology, 2017), this goes 

some way to explaining how the more recent negative IOD, during which rains 

would have normally been experienced across most of Victoria, resulted in less 

rainfall than expected.  Even though species are mostly well-adapted to short-

term variability in climate, they are not necessarily adapted to longer-term shifts in 

mean climate and the increased frequency and intensity of extreme events 

(Hennessy et al., 2007).  

1.2.7 Anthropogenic changes to Australia’s fire regime 

While many believe that Aborigines burned bush on a regular basis (Jones, 1969, 

Gammage, 2011), it is questionable whether the frequency and extent matches 

that of burns, both bushfire and prescribed, of present times.  In fact, what has 

been highlighted is that distinct changes in fire regimes have occurred with the 

arrival of Europeans approximately 200 years ago (Lindenmayer, 2007, Mooney 

et al., 2010).  Bickford et al., (2008) have shown in a region of South Australia 

that sedimentary records indicate a change has occurred in the vegetation 

species composition.  It is suggested this occurred during early European 

settlement (Bickford et al., 2008).  Fire regimes have been significantly altered 

with the length of the fire season extended, resulting in more extensive burning, 

more frequent fires and significant changes in the spatial patterns of fires (Steffen 
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et al., 2017).  This is in contrast with the patchy fire regime carried out by the 

indigenous people prior to European settlement (Gammage, 2011).   

1.2.8 The political context behind current prescribed burning protocol in Victoria, 
Australia 

Prescribed burning, as a means of managing vegetation growth processes and 

fire fuel loads, has global application across different landscapes.  Mediterranean 

land managers across southern Europe apply prescribed burns to ameliorate the 

effects of bushfire and for managing habitats for grazing and wildlife (Fernandes 

et al., 2013).  South African conservation areas of savanna ecosystems use 

prescribed burns to conserve biodiversity (Brockett et al., 2001); in the USA, 

prescribed burns are applied to remnant prairie patches to restore ecosystem 

integrity (Brudvig et al., 2007) and in the US eastern deciduous forests, to 

improve the sustainability of oak forests (Artman et al., 2005).   

Victoria has a prescribed burning program implemented by government agencies 

as per the Code of Practice for Bushfire Management on Public Land 

(Department of Sustainability and Environment, 2012).  The operational and 

planning principles are underpinned by two objectives: 1) “To minimise the 

impact of major bushfires on human life, communities, essential and 

community infrastructure, industries, the economy and the environment. 

Human life will be afforded priority over all other considerations” and 2) “To 

maintain or improve the resilience of natural ecosystems and their ability to 

deliver services such as biodiversity, water, carbon storage and forest 

products” (Department of Sustainability and Environment, 2012). 
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Prescribed burning is a practice that has evolved over time in Australia and was 

reinforced after the Victorian bushfires of 1939, 1983 and 2009, where all three of 

the major fire events were instrumental in the evolution of the prescribed burning 

process.  Beginning in 1940, the Stretton enquiry into the 1939 fires responded 

with a policy of fire suppression.  Over time, the prescribed burning protocol was 

modified to the point of creating, as a legal base, The Forests Act 1958 

(Department of Sustainability and Environment, 2009).  In 2010, the Royal 

Commission investigating the Black Saturday bushfires of 2009 developed 

Recommendation 56, which suggested an increase in the level of prescribed 

burns in the Victorian landscape (Teague, 2010).  It was recommended that an 

increase in burns, via an area-based quota of prescribed burns, be applied to the 

State, in addition to the area burnt in bushfires.  This recommendation was 

subsequently legislated by the State Government.  In 2015, the area-burn 

protocol was replaced with a strategy-burn policy -  “..strategic bushfire 

management plans that outline activities to implement the bushfire management 

strategies..” (Department of Environment Land Water and Planning, 2015).  The 

intention is to manage the landscape for risk to human life and assets, as 

opposed to burning the landscape to achieve an area-burn quota. 

Of importance is the point that crises can impact evidence-based policy.  The 

Royal Commission, in investigating the bushfires of 2009, examined each of the 

fires that occurred on Black Saturday (Teague, 2010).  Their investigations 

included the effects of prescribed burns on two of the locations that burned that 

day.  The Kilmore-East fire was not impeded by a prescribed burn that was 

carried out in that location more than three years prior, whereas the Kinglake 
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area had been burned by a bushfire in 2006 and the rate and spread of the Black 

Saturday fire was considered to have been greatly reduced.  The Royal 

Commission determined that, on Black Saturday, the effects of the bushfires were 

limited by prior bushfires or one-year old fuel reduction burns.  However, a 

recommendation to increase the area managed across Victoria with prescribed 

burns was presented and the State Government of Victoria then implemented a 

burn program, to meet the stipulated burn quota.  This is evidence that a crisis 

may drive a policy that protects people first and demotes ecological values.  Ever 

since the Stretton enquiry into the 1939 bushfires (Stretton, 1939) Victorians have 

grappled with the issue of increasing prescribed burns (Ellis et al., 2004, Pyne, 

2006, Attiwill and Adams, 2013).  Some people questioned the potential 

effectiveness of such an increase in the fuel-reduction target after the 2009 

bushfires, thereby there was a divide in opinions between the community, 

ecologists and key land-management agencies (Attiwill and Adams, 2013).   

1.3 Aspects of the fire regime that limit bird resources 

Evidence highlights that bushfires are occurring more frequently, with both the 

frequency and severity of fires expected to increase (Fairman et al., 2016, Steffen 

et al., 2017).  The application of prescribed burns is an attempt to reduce the 

impacts from severe, extreme and extensive bushfires.  Driscoll et al. (2010) 

highlight that knowing how species respond to fire regimes is crucial and that 

sustainable management requires knowledge based on “(i) a mechanistic 

understanding of species’ responses to fire regimes; (ii) knowledge of how the 

spatial and temporal arrangement of fires influences the biota; and (iii) an 

understanding of interactions of fire regimes with other processes”.  The 
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synergies that occur, because of a changing climate, add a level of complexity to 

these processes.   

Whilst much ecological fire management in Australia is built on the ‘pyrodiversity 

begets biodiversity’ premise (Parr and Andersen, 2006), meeting the needs of 

flora will not necessarily result in the needs of fauna being met (Clarke, 2008).  

Habitat requirements for avifauna include structural features such as hollows, 

which are not necessarily relevant to conserving floral diversity (Loyn, 2012).  

Further to this, birds have territory, nesting and food requirements (Legge and 

Cockburn, 2000, Debus, 2006) and these resources may become limited as fires 

vary in frequency and severity in an already fragmented landscape.   

Literature on the effects of fire on bird communities is extensive (Woinarski, 1999, 

Saab and Powell, 2005, Leidolf and Bissonette, 2009), and avian responses to 

fire in the south-east region of Australia continue to be a topic of widespread 

interest. 

In the forests of south-eastern Australia, a landscape impacted by a dynamic 

changing climate, recent research has often been focused on different vegetation 

types.  Eucalypt Foothills Forests are a major vegetation category across Victoria 

(south-west, central and north-east regions), and similar to Heathy Dry Forests in 

as much as Eucalypt Foothills Forests are Heathy Dry Forests with wetter, denser 

gullies (Cheal, 2010).  There has been considerable research on the Eucalypt 

Foothills Forests (Loyn et al., 2003, Loyn and McNab, 2015, Haslem et al., 2016, 

Leonard et al., 2016, Kelly et al., 2017).  In recent years there have been 

extensive efforts to examine bird responses to multiple fire events, with two major 
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works considering multiple faunal species (Leonard et al., 2016, Kelly et al., 

2017).  Most recently Kelly et al. (2017) published extensive work on birds, 

mammal and vegetation distributions based on factors related to the fire regime.  

These comprehensive assessments highlight the importance of moving from 

research based on single fire events to more comprehensive fire regime 

assessments, as we move into an era where the elements of a fire regime are 

rapidly changing, and modelling becomes more complex.  Further studies based 

on south-east Australian landscapes have focused on both the semi-arid region 

(Brown et al., 2009, Taylor et al., 2012, Taylor et al., 2013, Watson et al., 2012) 

and more recent studies have investigated fire impacts on avian species in mixed 

vegetation of damp scrub, heathland and tall mixed woodland in this region 

(Sitters et al., 2014a, Sitters et al., 2014b, Sitters et al., 2015).   

Despite numerous studies, limited research has been carried out on the impact of 

fire on the birds of the Heathy Dry Forests across western and central Victoria.  

As this region is heavily impacted by rainfall anomalies and is subject to climate 

drivers that may impact to a greater degree than they do across the eastern or 

northern regions of the State (Bureau of Meteorology, 2018), it is imperative for 

current research of bird responses to fire to be directed to this vegetation type.  

Furthermore, there is uncertainty regarding the characteristics of planned burns 

that may influence avian diversity (Sitters et al., 2014a). 

What is known of bird responses to fire is that fire will directly impact birds, 

resulting in flight or death (Reilly, 1991, Gill and Catling, 2002); and indirectly, by 

altering the habitat resources associated with vegetation structure (Loyn et al., 

2003).  The vegetation provides the environment for courtship, cues for breeding 
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and sites for nesting; along with predator protection, and food and shelter from 

inclement weather (MacArthur and MacArthur, 1961, Wiens and Rotenberry, 

1981). Hence, birds are sensitive to disturbance within their habitat and, as such, 

are highly responsive to spatiotemporal environmental change (Loyn and 

McNabb, 2015, Leonard et al., 2016, Kelly et al., 2017).   

As the body of literature around birds and fire research grows, highlighting the 

complexities inherent in systems impacted by a changing climate, there is a need 

to explore whether the observations hold for the flammable Heathy Dry Forests, 

given the importance of this habitat for bird conservation; the “Victorian 

temperate-woodland bird community” is listed as a threatened community and is 

therefore protected under the Flora and Fauna Guarantee Act 1988 (Department 

of Environment Land Water and Planning, 2017).  In a decade underpinned by a 

fire regime that is rapidly changing in terms of not only bushfire frequency but the 

extent of the application of prescribed burns, further research is crucial.  The 

combination of a deliberate fire management regime, under changing natural fire 

climate, risks the ongoing security of fire sensitive communities, including forest 

birds.  

A meta-analysis of the fire-bird literature in the United States highlighted the 

importance of the fire regime in its impacts on population changes in bird species 

(Fontaine and Kennedy, 2012).  Furthermore, recent contributions to our 

understanding of fire regimes have greatly enhanced our understanding of forest 

ecosystems (Bradstock, 2012, Fernandes et al., 2013, Kelly et al., 2017).  

However, Mediterranean landscapes are in a constant state of flux, due not only 

to regional climate drivers, but as a result of constant land-use change 



 

 

1-27 

 

(Fernandes et al., 2013).  Continually updating bird data records, in regions 

heavily fragmented by numerous drivers of change, is therefore crucial.  The 

challenge lies with working with short-term datasets, as longer and more detailed 

databases are required to understand change across landscapes where climate 

is variable.  

For avian communities, it is important to continue increasing the level of 

understanding on where birds of an assemblage feed and forage, and where, 

when and how they nest.  This may vary spatially, with changes in elevation and 

sub-surface geology, and temporally with seasonal changes and migration.  In 

the event of a fire, prescribed burn or bushfire, there needs to be a greater 

understanding of the immediate and post-fire responses of birds – the effective 

connectivity between suitable vegetation patches and how far the affected 

species will disperse.  Therefore, the age and structural components of the 

vegetation are fundamental to our understanding on bird responses to fire.  It has 

been highlighted that relatively little is known of the relationship between either 

individual fires or fire regimes and woodland fauna in Australia (Bradstock et al., 

2010).  But, we know that heterogeneity in the landscape is a key factor in 

maintaining bird biodiversity (Brotons et al., 2004).  So, while individual fire 

events in Mediterranean regions may not necessarily have negative impacts on 

birds, it is further aspects of the fire regime such as the severity of fires or the 

impacts from frequent fires, changing as climate changes, that may be critical to 

bird biodiversity (Moreira and Russo, 2007, Gil‐tena et al., 2009).   

The combination of all factors impacting fire regimes is complex (DellaSala et al., 

2004).  Fire behaviour changes over time and as a result policy changes that 
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were intended to ameliorate the impacts of severe fires may instead result in 

significant risks to the integrity of ecosystems (DellaSala et al., 2004, Teague, 

2010).  

1.4 Forest bird responses to the most recent fire 

Ecological succession describes the sequential processes of changes in plant 

species growth and development following a disturbance such as fire (Clements, 

1916, Connell and Slatyer, 1977).  Further, it provides a theoretical framework for 

investigating changes to faunal diversity in a landscape impacted by disturbance.  

The ‘habitat accommodation’ model of post-fire succession suggests that species 

respond to local habitat conditions that have been altered by factors such as fire.  

It states that species will reach peak abundance levels when the habitat fulfils 

their requirements, and leave or decrease in abundance when the habitat 

becomes unsuitable (Fox, 1982).  As there is an uneven application across the 

landscape of fire, both spatially and temporally, successional stages create a 

mosaic of vegetation ages in any given area.  Therefore, variable fire regimes will 

benefit bird biodiversity to the degree that the vegetation species present will 

provide resources specific to each successional stage (Bradstock et al., 2005, 

Parr and Andersen, 2006).  

The south-east Australian woodlands are not ecosystems in equilibrium, but 

rather, heterogeneous, open systems which are in a dynamic, non-equilibrium 

state (Levin, 1999, Phillips, 2004, Moore et al., 2009).  Disturbances can 

significantly enhance environmental heterogeneity at multiple scales and 

woodland ecosystems are influenced by the attributes of the disturbance regime.  

In the case of fire, the regime of this disturbance is characterized by the climate, 
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topography, substrate and biota in the region; it varies spatially and temporally; is 

dependent on specificity (the relationships between the type of disturbance and 

the attributes of affected sites, including species present, the seral stage of the 

vegetation community and its location); and it will vary in magnitude (including 

intensity, severity and frequency).   

Brotons et al. (2004) highlighted the importance of maintaining heterogeneity in 

the landscape for maintaining bird diversity in this region of warm summers (Piñol 

et al., 1998) and increasing fire frequency.  They argue that in this region, either 

bushfire or prescribed burns are favourable, (to maintain landscape 

heterogeneity), provided they are of a moderate size.  Indeed, they further 

suggest that, in Mediterranean regions where bushfires have drastically 

fragmented the landscape, the fragments are essential for avian species to 

persist.  In south-eastern Australia, fire disturbance occurs naturally as bushfires, 

and anthropogenically as prescribed burns, leading to a great degree of 

unpredictability over area, space and time of burn (Moore et al., 2009). 

Despite a widespread advocacy for creating a heterogeneous landscape, to 

maintain bird diversity (Brockett et al., 2001, Brotons et al., 2005, Brudvig et al., 

2007), further research on avian communities clearly illustrates that the extent 

and mix of vegetation age classes is necessarily specific to faunal species and 

geographic locations.  Research in the Mallee region of Australia highlighted how, 

in that semi-arid area, management strategies that promote mid to older 

vegetation are of a greater benefit to bird species; burning to create a diversity of 

vegetation age-classes would negatively affect more birds than it would aid 

(Watson et al., 2012, Taylor et al., 2012, Taylor et al., 2013). However, avifaunal 
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thresholds within fire-age classes have rarely been examined; much empirical 

research has been based on only vegetation thresholds (Driscoll et al., 2010).  

There is a paucity of long term bird data within fire research (Ford et al., 2001, 

Bennett and Watson, 2011).  Furthermore, much research is based on short time 

frames of two to three years of data collection.  Therefore, a great deal of the 

modelling of bird responses to changes in the vegetation is in terms of time-since-

fire; where an interval of time has lapsed since the last disturbance and the 

vegetation develops across seral stages.  Whilst the inter-fire interval (the time 

between fire events) is a strong influence on flora growth and development 

(Enright et al., 2015), time since the last fire often strongly influences the 

distributions of the more mobile species such as mammals and birds (Catling et 

al., 2001, Kelly et al., 2017).  This is because time-since-fire influences ground 

cover, and bark and canopy levels in the trees (Haslem et al., 2016) and thereby 

impacts food, nesting and protection resources for birds.   

While recent studies have shown that habitat variables (such as the extent and 

number of species forming ground cover), can provide greater predictive power 

than relying on fire variables alone (Sitters et al., 2014b), time-since-fire is useful 

in its utility as a predictor variable, as birds forming part of a guild will respond to 

multiple vegetation features across a location.  In fact, Kelly et al. (2017) highlight 

the importance of time-since-fire in their recent research in Victorian Foothills 

Forests.  They found that there were distinct preferences by some species to both 

older and younger vegetation age classes.  An example was the Flame Robin 

(Petroica phoenicea), whose populations, peaked in probability of occurrence in 

early successional stage vegetation.  This response aligned with earlier research 
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where this species has been reported at higher frequencies following several 

large fires in south-eastern Australia (Loyn, 1997, Lindenmayer et al., 2014, Loyn 

and McNabb, 2015).   

Since 1999, fire management planning in Victoria, Australia has moved towards 

integrating ecological guidelines into the fire management process (MacHunter et 

al., 2009, Cheal, 2010).  In 2006 a project was initiated assigning tolerable fire 

intervals to vegetation throughout Victoria.  The document known as Growth 

stages and tolerable fire intervals for Victoria’s native vegetation data sets (Cheal, 

2010) groups similar ecological vegetation classes across the State of Victoria 

into ecological vegetation divisions – EVC’s into EVD’s - and details the growth 

stages, post-fire, for each EVD.   Research can vary in its form of time-since-fire 

measure (Di Stefano et al., 2011, Sitters et al., 2014a) based largely on the 

broad-scale vegetation type.  Therefore, while acknowledging that much valuable 

research considers vegetation age with a continuous ‘years since fire’ measure, it 

may be useful to consider that the Cheal classification system may be 

appropriate to use for research across a region, a further tool for research 

comparisons between areas.  Reviewing the current research published for 

Victoria, it would seem that Cheal’s classification has not been validated for its 

utility in measuring faunal responses and biodiversity changes.  As more 

emphasis is placed on incorporating faunal changes in the landscape into 

management policy and procedures, it is prudent that the classification system 

currently accepted for broad vegetation age classification in the Victorian region, 

be reviewed in terms of bird responses.  
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1.5 An increase in fire frequency and what this means for forest 
birds 

1.5.1 Predictions on future fire activity 

Research on a global historical reconstruction and interpolation of fire events 

back to the 1900’s was based on fourteen regions of the world (Mouillot and 

Field, 2005).  Temperate forests were described for Europe, the United States 

and Australia.  The authors argued that, despite an increase in investment in fire 

prevention in the southern European region, fires there have increased in 

frequency from the 1960’s.  Further, they highlighted how fires in the western 

United States have increased in frequency from the 1970’s, possibly as a result 

from fuel accumulation over 40 years of fire suppression.  For Australia, the 

authors discuss the changing fire regime, a result of European settlement, as 

opposed to Aboriginal burning practices.  The brief reference to fire management 

policy changes fails to adequately reflect the complexities surrounding fire in this 

temperate landscape.  Nonetheless, their research highlights fire frequency 

increases across temperate regions right around the world (Mouillot and Field, 

2005). 

It is predicted that in Australia, the Forest Fire Danger Index (FFDI) (an index 

incorporating a drought factor, created by McArthur in the 1960’s) for the south-

eastern region will increase strongly by 2100 (Clarke et al., 2011).  Every model 

simulation produced in this research generated scenarios suggesting that fire 

seasons will start earlier in the year, leading to a longer overall season, 

accompanied by more severe fire weather, with the biggest increases in FFDI 

consistently driven by temperature increases.  
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Victoria, Australia has experienced an increase in ‘mega-fires’ (Attiwill and 

Adams, 2013), those fires that burn more than 100,000 hectares (Cruz et al., 

2012).  From 2003 through to 2014, 4.3 million hectares of eucalypt forest burned 

in Victoria, equivalent in extent to the cumulative area burnt in the region in the 50 

years prior (Fairman et al., 2016).  The FFDI increased markedly in the period 

from 1973 to 2010 (Clarke et al., 2013), and is projected to increase further in the 

coming decades, with the largest increases noted during the autumn and spring 

seasons (Clarke et al., 2013).  This will result in an even greater increase in the 

frequency of bushfires (Bradstock, 2010, Clarke et al., 2013, Flannigan et al., 

2009).  The recent increase in bushfire activity in Victoria resulted in 350,000 

hectares of forest burning twice, with a short interval between fires.  A short fire 

interval between severe fires may impact both the obligate seeders that need fire 

to regenerate and the fire tolerant re-sprouters (Fairman et al., 2016).  

Furthermore, this may result in shifts from temperate forest communities to 

shrublands or grasslands (or at the very least a shift to unstable states).  While 

there is a potential for a shift across ecological states within the temperate forest 

ecosystem, that much remains unknown about whether the current woodlands 

have crossed a threshold to an alternate state (Fairman et al. 2016).  While 

planned burning is applied to the landscape in an attempt to ameliorate the 

impacts of bushfire, the result may be an increase in the combined area burnt 

either deliberately or through bushfire. 

The four weather systems in south-east Australia: the PDO, IOD, ENSO and 

SAM, are crucial drivers of fire in the south-east Australian landscape.  Research 

has highlighted that positive IOD events precondition the landscape for bushfires 
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in south-eastern Australia (such as Black Saturday in 2009) (Cai et al., 2009) as 

do positive SAM events (Mariani and Fletcher, 2016), both of which exacerbate 

dry conditions and increase fire fuel load across the landscape.  Whilst an 

increase in rainfall will result in an increase in fire-fuel in dry regions, drought will 

dry out fuel in forests.  Furthermore, in attempting to identify the specific drivers 

behind a changing fire regime, the process becomes complex when so many 

different factors are combined (DellaSala et al., 2004).  

1.5.2   Fire management processes to include fauna 

Considerable work has been carried out to determine appropriate protocols for 

prescribed burning, implemented in attempts to reduce the impacts of bushfire 

severity.  Efforts have been centred on the need to increase the effectiveness of 

prescribed burning in terms of biodiversity (Penman et al., 2011) and, more 

specifically, to review the process of patch mosaic burning (Parr and Andersen, 

2006).  However, what is clear is that, for prescribed burning to be effective as an 

applied management tool, better informed and more clearly defined ecological 

values are required, in terms of meaningful and measurable objectives (Penman 

et al., 2011). This is best as part of an adaptive management approach (Walters 

and Hilborn, 1978), incorporating faunal ecology into management processes 

(MacHunter et al., 2009).  However, there is limited information available on 

community assemblage responses to long-term fire planning processes (Wittkuhn 

et al., 2011).  Adding to this, much bird conservation activity is focused on the 

classification and management of species at risk of extinction (Wilson et al., 

2011), which excludes other species within the assemblage and does not 

consider overall community conservation.  Spatial and temporal variations in bird 
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abundances may suggest an increase in numbers in one location which is, in fact, 

masking an environmental issue in another.  An example of this is illustrated by 

the spatial and temporal abundance differences across the range of the superb 

parrot (Polytelis swainsonii) (Manning et al., 2007).  While this research 

highlighted a strong positive relationship between plant productivity and bird 

abundances, the responses by the Superb Parrot to year to year seasonal and 

climate variability differed across regions.  

Adding yet another level of population assessment complexity, stochastic events 

such as climatic conditions at the time of sampling can make it difficult to make 

sound inferences about species population growth from short term studies 

(McNamara and Harding, 2004).  Therefore, research needs to focus not only on 

goals for individual species but on trends across broad regional and national 

scales (Collen et al., 2009, Ford, 2011).  This is essential when State-wide 

policies are required in management processes, as they are for prescribed 

burning.  Therefore, to determine evidence of bird responses, studies based on 

larger scales are required; necessarily referencing guilds and assemblages as 

opposed to a focus on just single species.  Studies based on whole communities 

may then include the results of species’ interactions.  Highlighted as imperative, 

rather than a species by species approach, research objectives need also to plan 

for the conservation of whole avifaunal communities (Recher, 1999).   

Underpinning our knowledge on the effects of applying intensive or frequent 

prescribed burns to a location, is the understanding that fire has spatial and 

temporal complexities.  There is a fundamental need to incorporate ecological 

values into prescribed burning protocols (Penman et al., 2011).  Fire 
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management in Australia has, to date, worked on the assumption that meeting 

the needs of plants will automatically meet the needs of associated fauna (Clarke, 

2008) i.e. have plants – animals will come.  There is a further assumption that 

‘pyrodiversity begets biodiversity’ (Parr and Andersen, 2006).  Neither of these 

assumptions give due consideration to the fact that increasing fire frequency in a 

location may, in fact, alter the vegetation structure and species composition 

which, in turn, may alter the available nesting sites and food availability for birds 

(Bradstock et al., 2010).    

1.5.3   Bird responses to fire frequency 

Prescribed burns are applied to the landscape, against a backdrop of an increase 

in bushfires.  It is therefore prudent for a shift from research focused on only 

single fire events to a whole-of-landscape approach, specifically one that 

considers frequent fires (e.g. Leonard et al., 2016, Kelly et al., 2017).  Even 

though bushfire has long been recognized for its importance in the Australian 

landscape, the impacts from increasing fire frequency in the Heathy Dry Forests 

of Victoria are not known.  However, research has been carried out in Eucalypt 

Foothills Forests on effects of fire frequency on vegetation (Haslem et al., 2016) 

and bird responses (Leonard et al., 2016, Kelly et al., 2017). 

While research investigating faunal responses to the increase in fire frequency is 

flagged as important (Woinarski and Recher, 1997) because the effects of fire 

frequency are less well understood (Leonard et al., 2016), current work has 

offered valuable insights into bird responses to frequent fire.  Fire frequency was 

flagged as the most influential component of the fire regime (Kelly et al., 2017), 

for frequent fires can remove coarse woody debris (Aponte et al., 2014) which 
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removes essential resources for foragers such as those that feed on damp 

ground (Leonard et al., 2016).  It is the damp ground foraging guild birds that are 

impacted by areas burning three times within 40 years in Eucalypt Foothills 

Forests (Leonard et al., 2016).  

Morrison et al. (1995) highlighted that the increase in variability of the length of 

the inter-fire intervals was associated with an increase in the species richness of 

both the fire-sensitive and fire-tolerant vegetation.  Therefore, it is the variation in 

inter-fire interval that results in a wide variety of plants.  Furthermore, there is a 

global shift to more frequent fires and knowledge gaps exist relating to the 

development and persistence of alternative vegetation states driven by changes 

in inter-fire intervals (Fairman et al., 2016).  Further, repeated, low intensity 

prescribed burns have been found to reduce coarse woody debris in temperate 

eucalypt forests (Aponte et al., 2014), an important structural component of many 

forest ecosystems (Carmona et al., 2002).  Therefore, examining responses by 

birds to repeated fires will determine whether any of these vegetation changes 

are impacting their abundance and persistence.  

Research explicitly states that the need to increase quantitative data on faunal 

studies combining bushfire and prescribed burns is imperative (Lindenmayer, 

2007; Adams and Attiwill, 2011).  Bradstock et al. (2010) argue that while 

effective use of fire can promote woodland regeneration, it can also lead to the 

eventual decline of woodlands.  This is because changing fire intervals may 

impact the survival of vegetation species.  So, while time-since-fire will change 

the immediate structure, a change in inter-fire interval may result in a change of 

the stable state of the vegetation, or a complete removal of a plant species from a 
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landscape (Morrison et al., 1995, Fairman et al., 2016).  As birds are responding 

the structure of the vegetation, it was deemed important in this research to 

investigate whether birds in the Heathy Dry Forests are responding to different 

fire frequencies in the landscape.  Therefore, increasing data on bird responses 

to fire frequency is paramount.   

The research by Kelly et al. (2017) is crucial in not only highlighting the value and 

importance of a fire regime approach, but in highlighting bird responses, 

specifically to the interval between fires.  They state that their findings of the inter-

fire interval reflecting a greater response than time-since-fire (for some species), 

was in fact unexpected, and suggest that recurrent fires may produce a different 

set of ecological conditions, such as altered species composition and vegetation 

structure.   Differences in bird responses to single fires compared with responses 

to repeated fires has also been found in the United States by Fontaine et al. 

(2009).  They investigated bird responses to single and repeated high severity 

fires in the conifer forests in a region of Oregon and showed that birds responded 

differently to repeat fires than they did to single fires.  Their results showed that 

repeated high-severity fire did not reduce species richness, and that bird 

densities were greater in repeat burns than in once-burned habitats.  These 

results highlight the complexities that arise when attempting to unravel the factors 

driving changes to bird assemblages in dynamic environments.   

The value of a review of responses to fire frequency, as opposed to reviewing 

responses to only a single fire event, can be highlighted in research by Loyn et al. 

(2003).  In this investigation on the effects of repeated low intensity fires on birds 

in Eucalypt Foothills Forests, it was highlighted that no factor impacting birds 
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operates in isolation.  Burn sites were small and surrounded by forest with a 

mosaic of fire histories and the patchy forest around the sites may have been 

important for the dispersal of birds during a fire event (Loyn et al., 2003).  Further 

adding, it was not known how species would respond if broad-scale burning was 

large enough to eliminate surrounding patches of unburnt vegetation.  However, 

Loyn (1997), in assessing an East Gippsland avian population post-fire, 

suggested that nearby unburnt forest has a limited capacity to absorb displaced 

birds, as the increase observed in nearby forest, in that project, was only 10%. 

While the 2003 study highlighted that effects of fuel reduction burning were milder 

than those of severe bushfire, it was noteworthy that the most common species in 

this forest type were the canopy dwellers, and these were removed from the 

effects of small scale, groundcover reduction burns.  These studies suggest that 

issues for birds in these areas do not arise from a one-off, low intensity fire event.  

Some birds forage on open, cleared ground immediately post-fire, and others 

forage in the epicormic growth in the next growth stage of the vegetation within 

the first three years.  Some, such as those birds living in the canopy layers, may 

not be adversely affected at all by low intensity, ground burns.  The question to 

consider is whether there is an appropriate, or required, fire frequency regime for 

the continued survival and existence of all the forest bird species.  

1.5.4   Variations in how fire frequency is measured 

Determining the fire history in vegetation is handled differently in Australia when 

compared with the USA.  In the USA the process of dendrochronology is widely 

used and is extremely useful in reconstructing fire history.  There is, however, a 

persistent belief in Australia that most eucalypt species are unsuitable for 
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dendrochronological analyses and therefore research interest has been limited 

(Brookhouse, 2006).  Instead, fire history is reconstructed in Australian 

environments by 1. sedimentary charcoal studies, and 2. reviewing the vital 

attributes of vegetation species present (Noble and Slatyer, 1980).  Charcoal 

studies are rarely of sufficient resolution either temporally or spatially and so, for 

ecological assessment, vegetation attributes are more informative.  

In Victoria, Australia, the vegetation classification system by Cheal (2010) not 

only ages vegetation in terms of time-since-fire, but also suggests a tolerable fire 

interval for each vegetation grouping, the minimum time required for vegetation in 

the community to persist, before fire once again occurs in the landscape.  The 

tolerable fire interval is deemed to be different for the time required after a 

bushfire, as opposed to the time required after a prescribed burn.  This difference 

is based on the assumption that prescribed burns are less intense and will 

remove a lesser amount of the vegetation from the environment.  To date, the 

tolerable fire intervals have not been measured in terms of their usefulness as 

measures for faunal communities.   

Research varies in how the inter-fire interval, or fire frequency, is accounted for in 

modelling.  Kelly et al. (2017) used, for an inter-fire interval, a mean measure of 

the years between each fire.  Leonard et al. (2016) used a count; the number of 

fires on a site in the 40 years prior.  Loyn et al., (2003) reviewed the effects of 

repeated, low intensity fires on the avian community in Victoria, Australia.  Five 

fire treatments were considered: frequently burned (spring), frequently burned 

(autumn), infrequent fires (spring), infrequent fires (autumn), unburnt.  Frequent 

fires were defined as occurring approximately every three years, and infrequent, 
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approximately every 10 years.  On this basis, the more recent work by Cheal 

(2010) suggests that the minimum fire interval required for vegetation to recover, 

post-fire, in the vegetation class investigated by Loyn, is 10 years post low 

intensity fire and 15 years post high intensity fire.  The question then arises as to 

whether the frequent and infrequent groupings should, in fact, be one ‘frequent’ 

grouping.  While the discussion in Loyn’s research suggested there being little 

variation between the different treatments, the outcome may have been different 

if the grouping of frequency classes had been in line with the Cheal classification.  

It is, therefore, prudent that the tolerable fire intervals of Cheal be reviewed in 

terms of faunal responses i.e. determine if birds are responding in time frames 

reflecting the tolerable fire intervals Cheal has outlined for vegetation growth 

post-fire.  This is essential if management is to invoke decisions impacting fauna 

based on the tolerable fire interval guidelines.   

There is an extensive volume of research completed on predicting future fire 

activity in regions around the globe (Carmona‐Moreno et al., 2005, Mouillot and 

Field, 2005, van der Werf et al., 2006, Schultz et al., 2008, Tansey et al., 2008, 

Flannigan et al., 2009), including predictions for a high likelihood of significant 

increases in fire risk across Australia (Pitman et al., 2007).  Indeed, there is a 

mounting body of evidence on the impacts from different aspects of fire on avian 

species.  Despite this, for the Heathy Dry Forests of south-east Australia, forests 

within a region flagged as being a crisis zone for bird biodiversity, there is a 

paucity of research on the responses by birds to multiple fires. 
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1.6 Response by birds to the impacts of prescribed burn severity 

The prescribed burn process in Victoria, Australia follows a management protocol 

that incorporates an adaptive management approach to fuel assessments (Hines 

et al., 2010) with burning processes underpinned by available knowledge on fire 

behaviour, fire weather and topography, all impacting prescribed burning 

decisions (Tolhurst and Cheney, 1999).   

There is literature available on the extent to which prescribed burns can be used 

to minimize biodiversity loss (Penman et al., 2011), and studies have been 

published on bird responses to prescribed burns (Loyn et al., 2003, Loyn and 

McNabb, 2015, Sitters et al., 2015).  However, what is evident is that an amount 

of research and subsequent literature assumes that prescribed burns are 

reducing, not removing, all vegetation (hence fire fuel) in the environment 

(Moreira et al., 2003, Penman et al., 2007, Pons and Clavero, 2010, Sitters et al., 

2015, Kelly et al., 2017), or have a measure of intensity as opposed to severity 

(Brockett et al., 2001).  Fire intensity and severity differ, in that intensity is 

measured in terms of the output generated by fire and severity is measured in 

terms related to the impact from the fire on the surrounding landscape.  Implicit in 

this may be the expectation that most prescribed burns are of low severity and 

controlled, with no acknowledgement that fire managers sometimes err and some 

prescribed burns are, indeed, severe.  With the increased emphasis on 

prescribed burning application, the assumption is made that the outcome is 

positive for the environment without considering that the prescribed burn process 

itself may be detrimental (Fernandes et al., 2013).   
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One study in Portugal pine forests determined that there were no significant 

differences in bird abundance and richness from plots burnt by prescribed burns 

compared with controls (Moreira et al., 2003).  This research was then referenced 

as indicating that the extensive use of prescribed burning to reduce understory 

has shown to have limited effects on birds in pine habitats (Pons and Clavero, 

2010).  Yet, neither paper refer to the severity of the prescribed burns being 

examined in Portugal; they may in fact have all been quite moderate in severity.  

The original research was clear in its explanation that burns were mostly 

‘extremely small’ and that vegetation structure returned to similar levels as that on 

control sites five years post-burn (Moreira et al., 2003).  The Portugal pine 

landscape recovered rapidly and may have not been impacted by prescribed burn 

severity however, in landscapes with longer recovery intervals between 

vegetation post fire age classes, or where tree hollows are a requirement for 

faunal species (Lindenmayer et al., 2013), severity may be an important factor.  

Bushfires are commonly high severity burns and much research into the impacts 

from fire of this level of severity are undertaken post-hoc (Loyn, 1997, Robinson 

et al., 2014).  The assumption may be that large fires can and do 

comprehensively burn the landscape.  While this may be the case, not all 

bushfires burn homogeneously, not all fires remove all resources essential to 

fauna (Bradstock, 2008).  In these cases, the bulk of biota are found to be 

reasonably resilient due to in situ landscape factors (Bradstock, 2008).  In fact, 

the importance of unburnt vegetation remaining within bushfire zones has been 

highlighted (Robinson et al., 2014).    
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Where vegetation changes dramatically post-fire (in terms of vegetation species 

composition), so too will the bird community change.  For example, Leavesley et 

al. (2010) reviewed bird assemblages post-fire in mulga woodland in the Central 

Australian arid zone.  In this instance, the early seral stage of the woodland 

community was effectively one of grasslands, therefore the bird community was 

characterised by granivores, whereas the older, long-unburnt vegetation was 

characterised by foliar insectivores.  It may be expected that after severe 

bushfires, community assemblage patterns will change, a result of the extreme 

change to vegetation structure.  However, as research has shown, these changes 

may not be consistent across a landscape.  Brotons et al. (2005) studied avian 

populations post bushfire across a regional area of the north-eastern section of 

the Iberian Peninsula and found that bird assemblages on sites immediately post-

fire varied across a regional area.  They suggest that the significant differences in 

post-fire bird assemblages were a response to regional scale dispersal factors 

impacting the colonization of habitats post bushfire.  The challenge is in 

determining which factor is resulting in a bird response – fire severity or variations 

across the landscape.  To model fire severity responses by birds, such that the 

severity factor is independently tested, is an important contribution to our 

knowledge of bird responses to fire. 

In the Victorian Heathy Dry Forests, bushfires are invariably of greater size than 

managed prescribed burns.  This is largely a consequence of the fact that the 

region is heavily fragmented, with Heathy Dry Forests existing as patches across 

the landscape, as opposed to continuous expanses of vegetation.  Furthermore, 

prescribed burns are controlled.  Therefore, it is feasible to consider that the 
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severity of the burn will only impact fauna to the degree that required resources 

are removed.   

1.7 A case for following the trends of common birds 

1.7.1 Monitoring birds to aid detection of drivers of decline  

Bird abundance trends directly reflect landscape change.  Furthermore, most bird 

species are easily recognized and monitored and there is abundant available 

data from not only professional ornithologists and ecologists, but from a huge 

volunteer base of reliable observers e.g. eBird, Birdlife Australia.  As such, the 

monitoring of birds yields trends that may serve as environmental indicators – 

declines in abundances are clearly highlighting an environmental threat and may 

be signalling potential extinction threats.   

1.7.2 The monitoring of common birds as a tool for determining land health 

Conserving and maintaining the landscape is necessary; to ensure that 

ecosystem functions are maintained, such as the protection of watersheds and 

soil, and the preservation of breeding grounds (Brundtland, 1987).  As such, 

determining the health of the landscape is fundamental in this pursuit.  

Birds are present in all regions of the globe and have long been recognized as 

efficient indicators of environmental health (Birdlife International, 2008, Drever et 

al., 2008, Larsen et al., 2010, Szabo et al., 2012, Birdlife Australia, 2015).  In light 

of this, Birdlife International has produced and updated comprehensive bird 

assessments, generating the volume State of The World’s Birds (Birdlife 

International, 2008).   
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Recognizing that, with frequent land-cover modifications, the generalist avian 

species are favoured (Wiens, 1989), further studies have added efforts to the 

fight against halting biodiversity decline by illustrating how common bird 

abundance measures are useful surrogates for determining environmental health 

across European countries (Gregory et al., 2005).  Birdlife International utilises 

this data, the Pan-European Common Bird Monitoring Scheme (PECBMS) 

(European Bird Census Council, 2017), within their State of The World’s Birds 

reporting (Birdlife International, 2008).  The total of 167 species forming the 

PECBMS is split into common forest or common farmland groupings, and then 

divided across regions, such that each grouping of common taxa for a region has 

approximately 27 species (European Bird Census Council, 2017).  Count data are 

then used to create indices and indicators, which are made available to not only 

Birdlife International, but to policy makers, scientists and the public (European 

Bird Census Council, 2017).  The indices produced are the key outputs for 

various policy purposes; to effectively measure land-use and development 

impacts across the European Union.  Two of these policies (but not limited to) 

are:  the Streamlining European Biodiversity Indicators; and the Indicators of 

Sustainable Development of the EU.  The indices are also biodiversity indicators 

for the EU’s Structural Indicator; and form part of The Regulation in EU’s Rural 

Development Plans.  However, whilst the common bird indices may be useful as 

tools in management decisions, the challenge is in determining which factors 

have contributed to trends, as changes to climate precipitate changes to both the 

fire regime in an area and the regional climate.     
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1.7.3   The common species as a component of community networks 

Common species represent a crucial component of community networks in terms 

of food web structure (Tylianakis et al., 2010).  The generalist species will have 

the greatest measurable connectivity within the food web and a removal of any of 

these may lead to cascading, secondary extinctions (Dunne et al., 2002).  

Understanding the population trends of the generalist species may, therefore, 

guide us to more effectively managing the entire community, especially when 

considering management processes such as prescribed burn protocols 

(Bascompte and Stouffer, 2009).  When a habitat becomes simplified, as it may 

post-fire, the specialists may be lost, or only return sporadically. However, a focus 

on the generalists will allow for the gathering of a statistically significant data set 

in order to understand a ‘baseline’ for fire-plant-bird interaction analysis.  Owing 

to this role, where a community may be resilient to the random extinction of 

specialist species, it may be vulnerable if generalist species come under threat of 

extinction (Bascompte and Stouffer, 2009).  In a fire-prone landscape 

experiencing changes to fire frequency, a potential exists for changes to occur to 

the structure of the network of mutualistic (e.g. plant-frugivore) and antagonistic 

(e.g. plant-herbivore) interactions between species; beyond changes to 

considering only the biodiversity measure of species richness within that 

assemblage.  Variability in the numbers of rare birds may result in their absence, 

whereas the common species can be measured in terms of range contraction. 

1.7.4   The value of common species in rapid assessments  

As much ecological research is based on data collected over short time frames 

(e.g. 2-3 years) and over limited spatial scales, extending this to a whole-of-
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landscape approach is challenging in terms of both time and cost.  One possibility 

to overcome this is to focus research on selected species from within bird 

assemblages anticipating that they act as surrogates for the entire community.  

The use of generalist species may be an option to overcome limits to sampling 

time, as they are the most abundant species and therefore easiest to monitor.  

Furthermore, faunal data collection is often inadequate when projects are 

undertaken at a small scale and over short duration (Clarke, 2008).  While well-

funded, long term studies can explore all species; shorter studies may benefit 

from a focus on more abundant taxa, important in community structure, to gain a 

greater understanding on dynamic changes to assemblage patterns as a result of 

an increase in fire disturbances. 

The Atlas of Australian Birds (Barrett et al., 2003) indicates that distributions of 

many woodland birds had contracted in historical times, including since the 

previous field Atlas project (Blakers et al., 1984).  However, even with over half 

the Australian woodland bird studies identifying a reduction in birds, there is still a 

paucity of data on their population trends and the variation in the populations 

between these two large surveys (Rayner et al., 2014).  If limited funds for 

research were directed to a focus on the more abundant, generalist species, 

these common species can be used as a proxy for assessing pressures on all 

species.  This is crucial to achieving effective whole community conservation 

strategies (Rayner et al., 2014).  

1.7.5   Common species in adaptive management processes 

Efforts to increase our level of understanding on avian species and to therefore, 

ensure the effective implementation of measures to maintain biodiversity, 
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continue (Russell et al., 2009).  A further tool in effective adaptive management is 

to predict the trends of our common woodland birds, as surrogates for entire bird 

communities.  However, as common species may be more resilient to 

disturbances such as fire (Koch et al., 2011), implementing an adaptive 

management approach is useful.  Continued monitoring and resultant 

modifications to management decisions will ultimately result in ongoing 

monitoring gradually building an understanding of rarer species.  The importance 

here is to be clear on whether the common species are representative of the 

community.   

As ecological systems are inherently complex there will always be a level of 

uncertainty in decisions made about their management.  Hence, adaptive 

management processes are useful in underpinning resource management 

decisions (Allen et al., 2011).  This places common woodland birds as useful 

tools, where the focus is in understanding ecosystem processes rather than for 

measures to rescue individual species.  Information on bird community responses 

to both time since last fire and fire history of the forest landscape is important in 

contributing to our current knowledge base, and will aid effective management 

decisions, and be helpful toward determining levels of resistance, and indeed 

resilience, within the forest avian community in maintaining populations in a 

flammable landscape (Wittkuhn et al., 2011).  Research in 2005 has shown that 

common farmland birds in Europe had been in decline for two decades (at that 

point in time), and the authors argued that farmland bird trends were a useful 

surrogate for trends in other elements of biodiversity within that habitat type 

(Gregory et al., 2005).  Even though they were unable to find evidence to show 
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that the woodland bird indicators were useful surrogates for other taxa in 

woodlands, they argued that overall, the European common bird indicators are 

powerful tools and enable valuable information to be communicated to policy 

makers to inform biodiversity measures and targets applied across Europe 

(Gregory et al., 2005).   

Research has highlighted the extensive knowledge gaps in our understanding of 

the responses by plants and animals to different fire regimes (Clarke, 2008, 

Bradstock, 2010, Driscoll et al., 2010, Bowman et al., 2012).  Clarke (2008) 

argued (prior to the events of Black Saturday in 2009), that management of fire 

regimes needed to move past floristics alone and that faunal species responses 

to different fire regimes were poorly understood.  It is therefore imperative to 

extend the suite of evidence and test the current assumptions on the expected 

effects on avifauna from fire in the landscape. 

1.8 A changing climate resulting in ‘super wicked problems’  

The term ‘wicked problem’ was borne out of the inability to combine definable 

problems in natural science with those undefinable in social studies (Rittel and 

Webber, 1973).  The term ‘wicked’ is applied to denote a resistance to resolution.  

The term has been used to describe environmental issues, where a resolution of 

a situation or conflict does not occur, no matter how much reasoned effort and 

application of science is provided (Kuchinke, 2000).  Underpinning the issue will 

often be a social or moral conflict, where there is a philosophical objection to a 

proposed process that may be ill-defined and relying on political judgement for 

resolution (Rittel and Webber, 1973).  Conversely, another example is where 

‘action groups’ form, in attempts to create a voice, when policy is perceived to be 
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not representative of either science or the public wish.  In these situations, 

alternative methods or plans need to be implemented to pave a way forward 

(Kuchinke, 2000).   

Following its initial use to describe conflict, there has been a further expansion on 

the application of the term ‘wicked problem’ with ‘super wicked problem’ (Levin et 

al., 2007).  This type of problem is defined as being one that has four climate 

change issues underpinning it, namely; time is running out; the authority 

addressing them is weak or non-existent; that those who cause the problem are 

also seeking to address it and lastly; the responses are pushed into the future 

when it is immediate action that is required (Levin et al., 2007). 

A changing climate is resulting in an increase in the frequency of bushfires, which 

in turn leads to a management focus on increasing prescribed burns in the 

landscape (e.g. Ellis et al., 2004, Teague, 2010).  Both these factors combined 

result in more area of the landscape burnt each year.  While the process of 

applying fire to the landscape is a response by society to manage a perceived 

increase in risk to property, it could be described as a ‘super wicked problem’.  

This highlights the imperative of investigating and developing a clear 

understanding of bird responses to fire.  

1.9 Research themes 

This thesis explores two inter-related themes (Fig 1.4). 

1. What are the common, moderately common and uncommon species within 

the forest bird assemblage? 
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2. What are the effects of fire interval (in terms of time since fire), fire 

frequency and fire severity on the forest birds? 

 

 

       

 

                      
 
 
 
           Heathy Dry Forest birds                                                Heathy Dry Forest sites                                              
  
 

Figure 1.4 Research themes   

Research themes of 1) species classification into groupings of common, less common and 
uncommon, and 2) factors of the fire regime impacting forest birds.   

 
 

Forest birds are declining in both range and abundance in the south-east region 

of Australia (Birdlife Australia, 2015).  Furthermore, evidence suggests that 

generalist species are better suited to landscapes impacted by continual change 

(Watson et al., 2014).  Managing for all impacting processes to maintain bird 

biodiversity is complex.  Therefore, determining which are the common species 

within the forest bird assemblage and reviewing their responses to fire, compared 

with the responses of the less common species, may determine whether the 

common species could be further used as indicators of land health in the region.  

Fire frequency and 
time since fire 

Fire 
severity 

Common 
species 

Moderately 
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The second theme explores impacts of the fire regime on the forest birds.  The 

evidence outlined in this chapter highlights the imperative of understanding forest 

bird responses to fire regimes (Driscoll et al., 2010), in a landscape impacted by 

numerous, inter-related, changing factors.  Investigations on this theme focus on: 

i. The common and moderately common bird responses to fire interval in 

terms of time-since-fire and fire frequency; 

ii. The responses by a subset of the complete data set of forest birds to 

prescribed burns of different severities, from a subset of sites. 

1.10 Research objectives  

The research reported in this thesis has three general objectives: 

1. To quantify forest bird responses to time since fire and fire frequency in 

terms of individual species and foraging guilds; 

2. To quantify forest bird responses to prescribed burn severity in terms of 

the bird community and individual species’ responses; 

3. To quantify the responses of common birds compared with those of 

moderately common birds and therefore determine whether the common birds 

are representative of the entire assemblage, in terms of individual species and 

foraging guilds. 

Specific predictions are outlined below and described in more detail in the 

overview and discussions of each results chapter (Chapters 3 and 4).  
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1.11 Thesis structure 

The study area and project methodology are outlined in Chapter 2.  This section 

discusses the region around the monitoring sites, the project design, explanations 

pertaining to data collection, and the identification of both fire frequency and fire 

severity rankings.  Statistical methods are described for each results chapter. 

In chapter 3 the response of birds to time since fire and fire frequency are 

examined.  Discussion focuses on broad community responses.  Following this, 

the common forest species’ responses are compared with those species less 

common, to determine whether common bird responses are representative of the 

entire assemblage.  There are three broad predictions: 1.  that early post-fire 

vegetation in Heathy Dry Forest is characterised by distinct structural elements in 

the vegetation and, as such, will support distinct bird assemblages, 2. that there 

will be distinct individual species’ responses to time since fire, a result of the 

immediate impact of fire on vegetation structure, and 3. that there will be little 

evidence of changes to assemblages based on fire frequency.   

In Chapter 4 the response of birds to prescribed burns of different severities is 

examined using a Before-After Control-Impact project design.  This was 

measured for the bird community in terms of alpha and beta diversity.  Further, a 

group of individual species’ responses to prescribed burn severity was modelled. 

Two general predictions were made regarding birds’ responses to prescribed 

burn severity:  1. that an increase in severity would result in a short-term 

decrease in species richness; and 2. that there may be an increase in species 

turnover in the first year post-fire. 
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Chapter 5 is a synthesis of the main findings and reviews the results in terms of 

the contribution this research makes towards conserving bird biodiversity in 

forests of south-eastern Australia.    

Chapter 6 is a discussion on the possible future for birds of the south-east region 

of Australia.  
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Plate 2  The most common bird of Heathy Dry Forests, Buff-rumped Thornbill, 

Acanthiza reguloides. 

 

Source:  Dean Ingwersen, Birdlife Australia  
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2 Study area and project methodology 

2.1 Study area 

2.1.1 Site locations  

The study area, in this project, was located in the Central Victorian Uplands 

bioregion in central southern Victoria, Australia.  The study area lies south of the 

township of Creswick (37.42oS, 143.89o E), east of Linton (37.67oS, 143.52oE) 

and includes, along its south-east edge, the Brisbane Ranges National Park 

(37.88oS, 144.26oE), (Fig 2.1).  The region has a temperate climate with a winter 

mean monthly temperature range of 3.2oC (daily minimum) to 13.8oC (daily 

maximum).  The equivalent mean monthly summer temperature range is 8.8oC to 

27.8oC (Bureau of Meteorology, 2017).  Rainfall recorded at Durham Lead 

(central in the study area) is representative of the region with an annual mean of 

830.5 mm from 2009-2012 (Bureau of Meteorology, 2017).   

 

Figure 2.1 Site locations in Victoria, Australia showing 84 sites in 14 groups of six. 

 



 

 

2-58 

 

2.1.2 Regional climate 

Victoria has been on a drying trend since the 1970’s (Fig 2.2).   

The Millenium Drought (1996-2010) affected most of southern Australia.  Central 

and western Victoria experienced low rainfall throughout this period.  Whilst the 

drought broke in 2010, both the central and western Victoria regions then 

continued on a drying trend throughout 2012 – 2014 (Bureau of Meteorology, 

2017).  Bird observations were conducted throughout this drying phase (2012-

2014) (Chapter 3).  Further bird observations were included for pre and post-burn 

analyses (Chapter 4), and those observations were conducted immediately after 

the Millenium Drought broke (2010).  

 

Figure 2.2 Drying trend across Victoria, Australia. 

Source:  Bureau of Meteorology (2017). 
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2.1.3 Sites for time-since-fire (TSF) and fire frequency analyses  

Sites selected for this research form part of the project “Fire in Temperate Forest 

Landscapes”, designed as a whole-of-landscape study in dry eucalypt forests (in 

the midlands region), incorporating mammals, bats and birds (Palmer, 2015).  

This initiative forms a component of a Victorian Government program known as 

‘HawkEye’, ongoing research incorporating projects in areas such as the Mallee, 

Otway Ranges and Gippsland Foothills.  This program was implemented as a 

direct result of the Royal Commission into the Black Saturday fires (Teague, 

2010).  Recommendation 58 in the Royal Commission findings was a 

requirement for data collection, to monitor and model the effects of prescribed 

burning programs (Teague, 2010). 

The site selection was based on the principle of land mosaics (Bennett et al., 

2006) by selecting groups of six sites, from the same Ecological Vegetation 

Division (EVD) of Grassy Heathy Dry Forests (see Table 2.1), all within an area of 

three km diameter, to form a ‘fire-age mosaic’ (Fig 2.1). There was a total of 84 

sites forming fourteen mosaics, with approximately 80 kilometres between the 

sites furthest west, and those furthest east.  Sites were two hectares in size, a 

minimum of 600 metres apart and selected to be at least 50 metres distant from 

roads and burn edges, and at least 100 metres from drainage lines and major 

clearings. Site selection within the project design targeted large, relatively intact 

areas of native vegetation embedded within substantial areas of forested public 

land (Palmer, 2015). 
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Mosaics were selected to represent a gradient in ‘fire diversity’, from ‘low fire 

diversity’ where sites within the mosaic had experienced no recent fire or only 

one fire event, to ‘high fire diversity’ where sites within the mosaic had a diverse 

fire history (i.e. four to six fire events represented in a mosaic) (Palmer, 2015).  It 

was anticipated that this design would therefore capture variations in bird 

abundances that may have been a result of the topographical variations across 

the landscape.  So, where some mosaics had experienced very little or no fire in 

the recent past (last 34 years), others had experienced fire, either as a single fire 

event or as multiple fires over time (Palmer, 2015).  

2.1.4 Subset of sites for fire and prescribed burn severity analyses 

The project investigating bird responses to prescribed burn severity incorporated 

a subset of the initial 84 sites that formed part of the fire frequency project.  From 

the initial 84, 30 sites were selected from an area with Linton to the west 

(37.67oS, 143.52oE), Durham Lead to the east (37.69oS, 143.88o E) and across 

Enfield State Park to the south (37.75oS, 143.75o E).  Of those 30 sites, 14 were 

given prescribed burns during a two-week window spanning March to April in 

2012, allowing for an opportunistic study.  The remaining 16 sites were used as 

control sites.  The prescribed burns were part of a Department of Environment, 

Land, Water and Planning (DELWP) autumn seasonal burn plan and each of the 

14 sites impacted were entirely burnt. 

2.2 Vegetation 

The Victorian Government Department with authority over the environment 

(currently DELWP but previously DSE) had developed spatially explicit native 
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vegetation data sets based on vegetation characteristics and physiographic 

variables (Cheal, 2010).  This classification is known as Ecological Vegetation 

Classes (EVCs).  Due to the wide range and large number of EVC’s within 

Victoria (300), it became prudent to group EVCs into EVDs; EVCs were grouped 

into 32 EVDs based on ecological similarities (Cheal, 2010). 

Dry, temperate eucalypt forests comprise the major natural vegetation that 

remains in the study area, as it does over much of southern and eastern Victoria.  

The major blocks of forests that remain near Linton, Enfield, Lal Lal, Creswick 

and the Brisbane Ranges support Grassy/Heathy Dry Forests Ecological 

Vegetation Division (EVD), which mostly comprises Heathy Dry Forest Ecological 

Vegetation Class (EVC) occurring on foothills and ridges.  This EVC supports a 

low, relatively open understorey dominated by tussock grasses (Poaceae), with 

low to medium height sclerophyllous shrubs (e.g. Epacridacaeae, Fabaceae) 

common.  The eucalypt tree canopy includes stringybark (e.g. Messmate 

Eucalyptus obliqua, Brown Stringybark E. baxteri) and peppermint species 

(Narrow-leaved Peppermint E. radiata and Broad-leaved Peppermint E. dives), as 

well as scattered gum-barked species such as Manna Gum (E. viminalis). 

All sites selected for study in this project were within vegetation classified as 

Grassy/Heathy Dry Forests EVD and all were within the Heathy Dry Forest EVC. 

2.3 Recent fire history and prescribed burn protocols 

The study area has experienced both bushfires and prescribed burns over recent 

decades.  Major bushfires in the study area in the past two decades include 

events centred on Enfield State Park (1995), Creswick Regional Park (1997), 
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Linton State Park (1998), the Brisbane Ranges National Park (2006) and in 

Scotsburn (2015).  Prescribed burns have been applied broadly across the 

landscape to achieve fuel reduction goals and operational objectives.  The 

objectives for these burns are:  to meet fuel reduction targets, for regeneration 

burns, or for targets set, following the guidelines prescribed for ecological burns 

(Department of Sustainability and Environment, 2004).  Further to this, burns will 

be carried out by following management procedures which outline the processes 

required for creating burns of variable intensities, designed to achieve specific 

reductions in fire fuel. These targets may range from achieving below 50% of 

ground cover reduction, to near complete fuel reduction of the site (i.e. 80% of 

fuels removed) (Department of Sustainability and Environment, 2004). 
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2.4 Methodology 

2.4.1 Categorical vegetation age classes based on TSF 

As vegetation age was a factor in the analyses, age classes were determined for 

analyses based on the duration between the last fire and the dates of the bird 

surveys.  An adaptation of an already established ageing protocol intended for 

Victorian Grassy/Heathy Dry Forests was utilised for determining TSF vegetation 

age classes with respect to the maturity and phenology of the vegetation (Table 

2.1, Plates 4-8).  Two descriptors are given in Table 2.1, distinguishing the 

regrowth vegetation of the 6 month to 2.5 year age class (dominated by epicormic 

regrowth on tree trunks with ground mostly bare), from the vegetation in the 2.5 – 

10 year age class.  In Heathy Dry Forests, the latter age class is predominantly 

new growth vegetation (shrubs, sedges and young trees), such that bare ground 

is less common.   
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Table 2-1 Post-fire age classes for Grassy/Heathy Dry Forests vegetation.  

Source:  Cheal (2010). 
 
Code            Fire-age range           Descriptor   
              in thesis 

TSF1 

Most of the ground bare, bradysporous 

species releasing seed, soil-stored seed 

germinating, resprouting species have 

buds activating, eucalypt coppice evident 

at end of stage, species not flowering, 

little or no litter                                  

0 – 6 months                                                           

  

TSF2 

Most of the ground is bare, fire 
ephemerals common, bradysporous 
species germinating, tree seedlings     
evident, resprouting species vigorously 
growing, herbaceous fire ephemerals 
and annuals with first seeds set, little to 
no litter  

6 months – 2.5 years regrowth 

        

TSF3 

Bare soil less common, fire ephemerals 

in decline with longer lived fully 

reproductive, earlier germinants and 

resprouting shrubs and sedges 

vigorously growing, some litter 

accumulation  

2.5 – 10 years new growth 

TSF4 

Canopy cover at maximum, all fire 

ephemerals retreated to soil seed store, 

no further germination of bradysporous 

species, resprouting species growing, 

sedges common but not vigorous, 

canopy eucalypts flowering, herbaceous 

species appearing, litter accumulating 

and lichen establishing  

10 – 35 years  

TSF5 

Canopy opening, canopy eucalypts 

flowering, annual species more common, 

no further germination of bradysporous 

species, resprouting shrubs growing but 

growth rate decreasing, litter cover re-

established with lichen and bryophyte 

cover well established  

35+ years  
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Typical vegetation in Victoria’s Heathy Dry Forests (EVC), post-fire age classes.  
 
 

 

Plate 3  TSF1, 0 to 6 months, Linton. 

 

Plate 4  TSF2, 6 months to 2.5 years, Linton. 
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Plate 5  TSF3, 2.5 to 10 years, Brisbane Ranges. 

 

Plate 6  TSF4, 10 to 35 years, Creswick. 
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Plate 7  TSF5, 35+ years, Brisbane Ranges. 

         

2.4.2 Categorical fire frequency rankings 

Cheal (2010) estimated that the minimum tolerable fire intervals for a 

Grassy/Heathy Dry Forest are: 10 years post prescribed burn, and 15 years post 

bushfire.  These classes are selected to ensure those species with the longest 

duration to reproductive maturity are accommodated to retain the ability to recruit; 

when enough flowers have matured to provide a sufficient viable seed source to 

replace a population.  This principal is based on the incapacity of species 

replacing themselves when fire occurs before adult stages are reached.  Further 

to this, Cheal (2010) suggested that the greatest vegetation response to fire 

frequency will appear after the second fire in this EVD, when intervals are of less 
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duration than the suggested minimum.  Understanding that the minimum tolerable 

fire intervals are a bench-mark measure for forest vegetation regeneration, one 

objective was to investigate whether in fact they are also a suitable measure for 

forest bird responses.  With these factors in mind, sites were grouped into five 

‘strength-of-impact’ categories (Table 2.2), in order to model the effects of fire 

frequency.   

Table 2-2 Strength of fire impact on EVD3 Grassy/Heathy Dry Forests vegetation, 
combining fire frequency and tolerable fire intervals (TFI). 

Code Fire frequency 
Fire interval Number of 

sites 

ff1 Unburnt or burnt over 34 years ago            18 

ff2 
One fire within last 20 years; or one 
fire within last 20 years plus one fire 
over 45 years ago  

           25 

ff3 2-4 fires recorded since 1939 not breaching TFI           15 

ff4 
0-2 fires in the last 19 years + 1-3 
fires > 20 years ago 

TFI breached >22 
years ago 

          14 

ff5 2-3 fires within the last 19 years 
TFI breached 
within last 19 
years 

          12 

                84 

Table 2.3 shows the number of sites within each TSF and fire frequency category 

for this project.  As some sites changed TSF classification across the life of the 

project, there were 115, not 84 combinations.  The representation of sites across 

the TSF and FF groupings was unbalanced owing to the nature of the fire 

landscape studied, with low replication within some categories.  Logically some 

combinations were never going to occur e.g. TSF5 (old vegetation) and 

‘frequently burnt’ (ff5).  The decision to maintain the number of TSF categories, 

rather than combining some to create a more balanced design, was made on a 

biological basis.  TSF categories were based on an accepted classification of 
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seven divisions modified down to five, to include all vegetation over 35 years in 

the one age class. This was because structural changes in Grassy/Heathy Dry 

Forests after 35 years are minimal (Cheal, 2010).  The remaining five TSF 

divisions act to separate the Grassy/Heathy Dry Forests into age classes with 

distinctly different vegetation structure e.g. the regrowth phase of TSF3.  As a 

result of this issue, TSF analyses were considered independently to fire 

frequency analyses.  

 

Table 2-3 Eighty-four sites in terms of TSF and fire frequency groupings.  

14 sites burnt just prior to and during the project, requiring them to be split between two age classes.  
TSF age classes: tsf1 0-6 months, tsf2 6mths to 2.5 years, tsf3 2.5 to 10 years, tsf4 10 to 35 years, 

tsf5 35+ years.  Fire frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 one burn 

within last 20 years, or, one fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 fires 
recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed burn 

or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI 

breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 
 

  

  ff1 ff2 ff3 ff4 ff5 

tsf1 0 8 4 8 0 

tsf2 0 10 2 7 3 

tsf3 0 12 10 2 11 

tsf4 7 5 5 7 0 

tsf5 13 1 0 0 0 

     total 115 

 

2.4.3 Prescribed burn severity rankings 

The vegetation components of canopy scorch, bark burn and ground cover were 

assessed within three months of fire at all burnt sites.  The extent to which these 

three parts of the vegetation were burnt, resulted in a percentage-based impact 

score.  These data were pooled and a percentage for burn severity created for 

each burn site.  Once sites were given a score of 1-10 based on their percentage 
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burn, it was clear that each site fell within distinct groupings of either low, medium 

or high severity burns.  Examples of ground cover, bark and canopy scorch for 

the three levels of prescribed burn: low, medium and high severity, are depicted 

in Plates 8 - 16. 

 

Plate 8  Low severity burn, ground cover.  Durham Lead. 
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Plate 9  Low severity burn, bark scorch.  Enfield. 

 

Plate 10  Low severity burn, canopy scorch.  Enfield. 
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Plate 11  Medium severity burn, ground cover.  Enfield. 

 

Plate 12  Medium severity burn, bark scorch.  Linton. 
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Plate 13  Medium severity burn, canopy scorch.  Linton. 

 

Plate 14  High severity burn, ground cover.  Durham Lead. 
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Plate 15  High severity burn, bark scorch.  Enfield. 

 

Plate 16  High severity burn, canopy scorch.  Linton. 
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2.5 Study designs 

2.5.1 An analysis of birds’ responses to TSF and fire frequency 

An inventory of birds was created by censusing bird species individuals on these 

sites in order to explore bird-fire history relations through space-for-time 

substitution (Letnic et al., 2004, Muir et al., 2015) to compare assemblages within 

the mosaics of contrasting/different fire histories.   

The fire history for each site was determined by reference to the DELWP Firemap 

GIS overlays from the DELWP online system.  The records included fires that 

occurred since 1939.  The 169 individual site fire events recorded were then each 

verified against original hard copy maps from DELWP archives and checked 

against the recollections of the fire and land managers.  Fires occurring during 

the 1970’s were missing from the online stored data.  As some classifications for 

TSF categories (Table 2.1) and fire frequency categories (Table 2.2) were made 

incorporating a 30 to 40 year window, efforts were made to ensure that data 

collected back to the 1970’s were accurate.  Information on each of these fires 

was taken from original hard copy maps and included in the dataset.  Of the 169 

fire events recorded on individual sites, 40 were prescribed burns and there were 

13 bushfire season events in total.  Bushfires such as those of 1966 had ignition 

points in multiple locations (Table 2.4).   

A table was created for 672 monitoring assessments, the overall number of 

surveys taken at sites, grouping each site into one of five post-fire vegetation age 

classes:  0-6 months (TSF1), 6 months – 2.5 years (TSF2), 2.5 years to 10 years 

(TSF3), 10 to 35 years (TSF4) and 35+ years (TSF5) (combined with ‘last burn 
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not recorded’).  Cheal (2010) proposed six post fire ages in his classification.  For 

the purposes of this project five were used, with the 35-45 years and 45+ years 

classes, along with sites with no record of burning, combined on account of the 

limited detail for pre-1970 fires. 

Fourteen sites were given prescribed burn treatments two months prior to the first 

monitoring round and prescribed burns were implemented at six sites over the 

duration of this research, after the commencement of bird surveys.   

2.5.2 Bird responses to fire and prescribed burns of varying severities 

Of the 30 sites selected for this project, 14 were burnt in prescribed burns during 

a two-week window at the end of March through into April 2012.  Of the 16 control 

sites, one was removed from the database as it had burnt in 2008, just prior to 

the scheduled pre-burn monitoring of 2010 and its vegetation was therefore much 

younger than other control sites.  Two further sites were removed, as they were 

treated with prescribed burns in 2011; burnt in the time between pre and post 

burn monitoring.  Further to this, three sites were used as controls for only part of 

the project due to prescribed burn treatments in 2013.  Of a total of 156 

monitoring sessions on sites, 84 were on burnt sites and 72 on control sites. 

A Before-After Control-Impact (BACI) design was used to investigate the 

influence of prescribed burn severity on the avifauna in the area, which involved 

bird surveys before and after prescribed fire and concurrent monitoring of both 

burn and control sites (Stewart-Oaten et al., 1986).
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Table 2-4 Burn history on sites from 1939 to 2014. 
Prescribed burns Bushfire information obtained through online DELWP fire history maps. 

Included is the Forest Commission Victoria Fire Prevention Plan Burn History, revised 1981. >50% burnt, (dark green), <50% burnt, (pale green). 

      Marks where the tolerable fire interval of 10 years post prescribed burn or 15 years post bushfire have been breached (Cheal, 2010). 
 

                         Recorded fires              

Location Identifier 1939 1966 1972-1991  1992-2001  2002-2014  

 Vegetation 
Age Class 

Fire 
frequency 

classification 

Sites in 
severity 
project 

   

Brisbane Ranges BR141       2006 Jan   TSF3 FF2     

 BR142     1994     TSF4 FF2     

 BR143       2006 Jan   TSF3 FF2     

 BR144       2006 Jan   TSF3 FF2     

 BR145       2013 Oct   TSF5,1 FF2     

 BR146          TSF5 FF1     

 BR151       2006 Jan   TSF3 FF2     

 BR152   1987    2006 Jan   TSF3 FF3     

 BR153   1990    2006 Jan   TSF3 FF3     

 BR154       2006 Jan   TSF3 FF2     

 BR155       2006 Jan   TSF3 FF2     

 BR156       2004 2006 Jan  TSF3 FF5     

 BR161       2005 Apr   TSF3 FF2     

 BR162          TSF5 FF1     

 BR163       2005 Apr   TSF3 FF2     

 BR164          TSF5 FF1     

 BR165       2005 Apr   TSF3 FF2     

 BR166          TSF5 FF1     

Creswick CR091   1977  1997 Jan  2013 spring   TSF4,1 FF3     

 CR092   1977       TSF4,5 FF1     

 CR093   1977    2003 May   TSF3,4 FF3     

 CR094   1977       TSF4,5 FF1     

 CR095   1977 1991 1997 Jan  2010 Nov   TSF2,3 FF5     

 CR096   1977  1997 Jan 
 

2010 Nov   TSF2,3 FF5     

Durham Lead DU081   1972 1983      TSF4 FF4 control    
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 DU082   1972    2008 Oct   TSF3 FF3     

 DU083       2012 Mar   TSF1,2 FF2 burn    

 DU084   1972    2012 Mar   TSF1,2 FF3 burn    

 DU085   1972    2004 Apr   TSF3 FF3 control    

 DU086       2012 Mar   TSF1,2 FF2 burn    

Enfield EN031  1966     2011 Mar   TSF2,3 FF2     

 EN032  1966        TSF5 FF1 control    

 EN033  1966        TSF5 FF1 control    

 EN034  1966        TSF5 FF1 control    

 EN035  1966     2012 Apr   TSF1,2 FF2 burn    

 EN036  1966        TSF5 FF1 control    

 EN041   1976 1985 1995     TSF4 FF4     

 EN042     1995     TSF4 FF2     

 EN043   1976 1985 1995  2010 Mar   TSF2,3 FF4     

 EN044     1995     TSF4 FF2     

 EN045   1976  1995     TSF4 FF3     

 EN046  1966   1995 
 

2008 April   TSF3 FF5     

 EN051  1966 78/79  1995     TSF4 FF4     

 EN052  1966 79/80  1995  2007 Apr   2008 Feb  TSF3 FF5     

 EN053  1966 79/80  1995  2009 Apr   TSF3 FF5     

 EN054  1966 79/80  1995  2009 Apr   TSF3 FF5     

 EN055   79/80  1995  2004 Mar   TSF3 FF5     

 EN056  1966 1973 78/79 1995     TSF4 FF4     

 EN061   1973 1976 1995  2012 Apr   TSF1,2 FF4 burn    

 EN062  1966 1973,    76 1990 1995 
 

2004 Apr    TSF3                             FF5 control    

 EN063  1966   1995     TSF4 FF2 control    

 EN064   1973,    76 1990 1995  2004 Apr   TSF3 FF5 control    

 EN065   1973,    76  1995  2012 Apr   TSF1,2 FF4 burn    
 

EN066 
 

1966 
  

1995 
 

2012 Apr 
 

 TSF1,2 FF3 burn     

 EN071   1972 79/80   2013 spring   TSF4,1 FF4 control    

 EN072   1972 79/80   2012 Apr   TSF1,2 FF4 burn    

 EN073   1972 79/80   2013 spring   TSF4,1 FF4 control    

 EN074   1972 79/80   2013 spring   TSF4,1 FF4 control    
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 EN075   1972 79/80   2012 Apr   TSF1,2 FF4 burn    

 EN076   1972 79/80   2012 Apr   TSF1,2 FF4 burn    

Lal lal LA111  1966 79/80    2011 Feb   TSF2,3 FF4     

 LA112          TSF5 FF1     

 LA113   79/80       TSF4 FF1     

 LA114   79/80    2003 Nov   TSF3,4 FF3     

 LA115   78/79       TSF4 FF1     

 LA116   79/80    2007 Nov   TSF3 FF3     

Linton LI011  1966   1992 1998 Dec 2009 April   TSF3 FF5     

 LI012  1966   1998 Dec     TSF4 FF2     

 LI013  1966   1992  2004 Oct 2011 Dec  TSF2 FF5     

 LI014       2010 Oct   TSF2,3 FF2     

 LI015  1966        TSF5 FF1     

 LI016     1998 Dec  2013 spring   TSF4,1 FF3     

 LI021 1939      2011 Mar   TSF2,3 FF2     

 LI022 1939         TSF5 FF1 control    

 LI023 1939      2012 Apr   TSF1,2 FF2 burn    

 LI024       2012 Apr   TSF1,2 FF2 burn    

 LI025       2012 Apr   TSF1,2 FF2 burn    

 LI026 1939      2012 Apr   TSF1,2 FF2 burn    

Mt Egerton WH131   78/79    2005   TSF3 FF3     

 WH132   78/79       TSF4 FF1     

 WH133   78/79       TSF4 FF1     

 WH134   78/79    2008 Nov   TSF3 FF3     

 WH135   78/79    2005   TSF3 FF3     

 WH136   78/79       TSF4 FF1     
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2.6 Data collection of bird surveys and foraging guild information 

2.6.1 Bird surveys for determining fire frequency responses 

Birds were monitored on all 84 sites in eight survey rounds incorporating two 

rounds for each of two spring/summer breeding seasons and two in winter, taken 

from June 2012 to February 2014.   

The 20 minute search method (Loyn, 1986) was used to survey birds.  This 

approach is accepted as a standard bird survey method, and it formed the basis 

of the procedure used in the Birds Australia Atlas (Barrett et al., 2003).  Bird 

monitoring method comparisons have shown that the 20 minute area search is an 

effective monitoring method with advantages over three other methods tested 

(transect, stationary count or rolling bird survey) (Hewish and Loyn, 1989).  

Sites were traversed for 20 minutes and all birds seen and heard were identified 

to species level.  Birds flying overhead, or heard and considered to be outside the 

two-hectare perimeter of the plot, were not recorded.  Two surveys on each site 

were conducted in the winter months of 2012 with two survey rounds undertaken 

the following spring/summer season.  This was repeated in 2013 with the final 

summer round completed during February 2014.  A total of 672 surveys was 

undertaken.  Equal numbers of morning and afternoon monitoring sessions for 

both winter and spring/summer were carried out for each site and the bird survey 

data were pooled for each season.  All surveys were carried out in mild weather 

conditions with no monitoring undertaken on days of extreme heat (>30oC) or 

when wind was greater than 20 km/hr.  In extreme heat birds are less active 
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making detection difficult, and in high winds birds cannot be seen or heard in the 

canopy as easily. 

2.6.2 Bird surveys for determining fire severity responses 

Birds were surveyed on all sites in six survey rounds incorporating two rounds 

before prescribed burning occurred and four rounds post prescribed burns.  Pre-

burn monitoring occurred in the spring/summer of 2010 and prescribed burns 

occurred in the autumn months of March/April 2012. The first two rounds of post-

fire monitoring occurred in the spring/summer immediately after the prescribed 

burns in 2012/2013 with the final two sessions the following spring/summer in 

2013/2014. 

2.6.3 Foraging guild classifications 

Bird species observed were classified into one of twelve foraging guilds (Table 

3.5) prior to data analyses.  

Table 2-5 Foraging guilds. 

Source:  Loyn et al. (2007). 
 

B Bark   takes invertebrates from bark on trunks and branches  

C Canopy  takes invertebrates from foliage of eucalypts and other large trees 

DG Damp  takes invertebrates from damp ground below shrubs, among dense 

 ground  understorey or among damp litter 

F Frugivore  takes soft fruit along with other food such as nectar, invertebrates or seeds 

N Nectarivores 
 takes nectar along with other food such as seeds (parrots) and fruit or 

invertebrates 

OG 
Open 
ground 

 takes invertebrates from open ground, quite often far from tree or shrub 
cover 

OT Open trees 
 takes invertebrates from open ground among trees or scattered tall shrubs, 

but not  

  

 from damp ground below dense cover, and does not usually venture far 
from woody vegetation 

SG 
Seeds 
ground 

 takes seeds from ground or low plants such as grasses, herbs and 
saltmarsh 
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ST Seeds trees 
 takes seeds from trees and shrubs or wide range of strata, or other food 

such as gall insects 

   or insect larvae extracted from wood 

TS Tall shrubs 
 takes invertebrates from foliage of tall shrubs, which may form middle 

storey of eucalypt forests 

V Carnivore 
 carnivore, taking vertebrates as an important part of diet, often along with 

large invertebrates  

   and other food such as fruit (passerines) 

W Water  water bird inhabiting inland waters 

    

In this exercise, in the classification of the forest bird species, the Grey Shrike-

thrush (refer to Table 3.2 for scientific names), often known as a generalist, was 

classified as a carnivore.  This was done to maintain consistency with classifying 

species into distinct feeding methods.  All other species were classified into 

distinct foraging guilds as per Loyn et al. (2007).  

2.7 Statistical analyses 

Two distinctly different methods were implemented to investigate and model TSF, 

fire frequency and fire severity responses.  The first method was one of 

combining investigations and assessments on the effects of TSF and fire 

frequency in the form of both ordinations and statistical modelling (Chapter 3).  

The second method was a Before-After-Control-Impact study (Chapter 4).  The 

opportunity to create this design arose when a number of prescribed burns were 

carried out concurrently on sites within the study area.  Pre-burn data were 

available, and for this subsection of data, bird responses to fire (as either control 

or burns) and fire severity were modelled. 

In both the TSF with fire frequency and fire severity projects, modelling of 

community, foraging guild and individual species responses were carried out in 

the R statistical environment (R Development Core Team, 2008), using the 
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packages lme4 (Bates et al., 2016) for fitting generalised linear mixed effects 

models (GLMMs), and MuMIN (Barton, 2016), a multi-model inference package 

for model selection.  GLMMs were chosen as they allow for nested data structure 

and possible correlation between datasets (Zuur et al., 2009).   

2.7.1 Graphing outputs: a comparison between modelling techniques using 
vegetation age classes versus continuous age data 

A comparison between modelling with continuous age class data as opposed to 

categorical data, was carried out in the R statistical environment (R Development 

Core Team, 2008).  Avian abundance data collected during eight observation 

sessions, across 84 sites, were added together, with species grouped into 

foraging guilds (Table 2-5).  Ten foraging guilds were modelled, using vegetation 

age as both continuous data in terms of ‘years since fire’ and as an age class 

category (Table 2-1).  There were two foraging guilds represented in the 

observed data that were not modelled, as individuals observed were too few 

(frugivores with two individuals and water birds with six).  The random effects 

were tested with options of mosaic and sites nested within a mosaic.  An 

Information Theoretic Approach was then used ranking candidate models for 

different random effects by comparing AICc (AIC with a correction for finite 

sample sizes) to select the most parsimonious model (Burnham and Anderson, 

2002). 

All Poisson distribution models were tested for overdispersion (Zuur et al., 2015).  

If a model was overdispersed (considerably >1), the individual level random effect 

(ILRE) factor was applied to the model, transforming the Poisson model into a 

Poisson-lognormal model, more appropriate for overdispersed data.  If the model 
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was still overdispersed after an ILRE was applied, a Negative binomial 

distribution was applied (Zuur et al., 2009).  In cases where the sample was 

underdispersed (<0.7), a Binomial distribution was applied to the model. 

Comparing a model for continuous data with one of categorical data was done by 

running both with gamm4 (Wood and Scheipl, 2017).  AICc was then used to rank 

the two candidate models, to determine which was the most parsimonious. 

2.7.2 Analysis of community composition response to TSF and fire frequency: a 
multivariate approach 

The influence of time since fire and fire frequency on assemblage composition, in 

terms of individual species presence and species grouped into foraging guilds, 

were both investigated using statistical analyses including non-metric 

multidimensional scaling (nMDS) (Clarke, 1993), permutational multivariate 

analysis of variance (PERMANOVA) (Anderson et al., 2008) and similarity 

percentage contribution of individual species or foraging guilds (SIMPER) 

(Clarke, 1993).  These analyses were all run in PRIMER-E, version 6.1.16 

(Clarke and Gorley, 2006) with PERMANOVA+ version 1.0.6 (Clarke and 

Warwick, 2001).  Due to their partial dependence, the influence of both TSF and 

fire frequency on birds were both investigated separately in all analyses.  

Ordinations were run on log(x+1) transformed bird count data to reduce the 

influence of several highly abundant species.  Initial investigations incorporated 

datasheets with breeding and non-breeding seasons set as two factors.  This was 

subsequently changed to data being split into separate datasheets for each of the 

two seasons, to view seasonal ordinations separately.  The transformed data 

were subjected to nMDS using the Bray-Curtis distance measure to quantify the 
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level of dissimilarity in composition between samples (Bray and Curtis, 1957).   

Six records of a woodland duck species (Australian Wood Duck Chenonetta 

jubata) and two of Mistletoebird (Dicaeum hiruninaceum) were removed from the 

bird dataset in the ordination process.  The ordination plots revealed these two 

species to be outliers, with all other taxa closely clustered, relative to the 

ordination distance between the cluster and these taxa.  The two species were 

included in all other data analyses.  In all instances three dimensional (3D) 

ordinations were viewed along with two dimensional (2D).  In each case stress 

levels were <0.2 for 3D but >0.2 for 2D.  As the major patterns in the 3D 

representations were also evident in the 2D representations, 2D were presented 

in the results as they provided a clearer visual presentation.  PERMANOVA+ 

model testing was used to determine the statistical significance of the differences 

in TSF and fire frequency effects.  This form of modelling is considered more 

robust than parametric statistics as it does not require the data to follow a 

particular distribution, acting only on the ranks of dissimilarity (Anderson et al., 

2008). PERMANOVA+ also allows a nested sampling design (Anderson et al., 

2008). 

As dispersion levels for the random factors in a nested design should be 

homogenous, Permdisp was run as a prelude to the Permanova analyses, to 

determine if there were any significant deviations from the centroid (Anderson et 

al., 2008).  The PERMANOVA+ models incorporated fixed factors of TSF or fire 

frequency, combined with season e.g. TSF*season, FF*season.  Models were 

created to deal with spatial and temporal nesting; i.e. sites nested within mosaics 

where sites in one mosaic are independent from sites in a second mosaic 
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(Anderson et al., 2008).  Both sites and mosaics were considered to be random 

samples from a larger pool, so were treated as random factors.  Therefore, along 

with the fixed factors, the design also incorporated ‘site’ as nested within any 

mosaic.  The datasets used for the model were the same as those used for 

species and foraging guilds in the ordinations.  In two analyses TSF data would 

not conform to one of the age classes and the models would not run.  In these 

instances, the analyses were simplified by removing mosaics from the model.  

The initial analysis was followed by pairwise testing to inform which pairs of TSF 

and fire frequency categories had a significant effect on composition.  To 

determine the species that drove the multivariate patterns detected by 

PERMANOVA+, the category pairs were then matched within the program 

SIMPER using Bray-Curtis percentages to determine the species contributing 

most to total dissimilarity.  This process was then repeated for foraging guilds.  

2.7.3 Community responses to TSF and fire frequency: a univariate approach  

The modelling of the avian community, in terms of foraging guild and individual 

species responses to both TSF and fire frequency, was carried out in the R 

statistical environment (R Development Core Team, 2008).   

Models were run testing continuous age with categorical age, therefore data 

sheets used in analyses maintained 672 data lines of bird observation numbers, 

representing 84 sites monitored eight times.  For foraging guild models, data for 

each species were added together to form the foraging guilds listed (Table 2.5).  

Data for both predictor variables of TSF and fire frequency were categorical 

(Tables 2.1, 2.2).  The random effects were tested with options of mosaic and 

sites nested within a mosaic.  An Information Theoretic Approach was then used 
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ranking candidate models for different random effects by comparing AICc (AIC 

with a correction for finite sample sizes) to select the most parsimonious model 

(Burnham and Anderson, 2002). 

All Poisson distribution models were tested for overdispersion (Zuur et al., 2015) 

(The overdispersion code is available at https://bbolker.github.io/mixedmodels-

misc/glmmFAQ.html).  If the sample was overdispersed (considerably >1), the 

individual level random effect (ILRE) factor was applied to the model, 

transforming the Poisson model into a Poisson-lognormal model, more 

appropriate for overdispersed data.  In cases where the sample was 

underdispersed (<0.7), a binomial distribution was applied to the model.  While an 

underdispersion factor was determined as the trigger, an underdispersion result 

indicated that the dataset had a large number of zeroes and/or the non-zero 

values were small.  In these instances, raw data were converted to either 

presence or absence values and run in a model with a binomial distribution. 

Necessary checks were undertaken for all GLMM models.  Candidate models 

selected as most parsimonious with different random effects were checked for 

dispersion levels.  For Poisson and Negative Binomial distributions, a Pearson 

residuals vs fitted values plot was run, to assess models by determining if there 

were any obvious patterns in the residuals (Zuur et al., 2009).  No unusual 

patterns in residuals were identified.  For Binomial distributions, model validation 

cannot be done in this manner as responses are either one or zero and therefore 

plotting Pearson residuals will give two bands (Zuur et al., 2015). 

Ggplot2 was used for graphing (Wickham and Chang, 2016). 
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2.7.4 The response of birds to prescribed fire and varying prescribed burn 
severities – a Before-After Control-Impact design approach 

Modelling of the avian community in terms of alpha and beta diversity responses, 

along with individual species responses, to both fire and fire severity, was carried 

out in the R statistical environment (R Development Core Team, 2008).   

Two predictor variables of fire (burnt and unburnt) and fire severity (1-10) were 

modelled to investigate the response of birds to prescribed burns and prescribed 

burn severity, using GLMMs.  Fire severity was modelled as continuous data.  

Ggplot2 was used for graphing the output data (Wickham and Chang, 2016). 

There were no control sites with vegetation burnt within the last eight years. 

Therefore, models incorporating fire were all run with this variable as either a 

control or a burn; there was no need to specify the vegetation age on the control 

sites.  Time was divided into two separate breeding seasons post-fire. 

A BACI model calculates the mean before-after difference at control sites and the 

mean before-after difference at treatment sites, and then calculates the difference 

between these differences to determine the interaction effect.  So, even if some 

of the before-after difference is due to an observer effect, we can assume it will 

be consistent across control and impact sites.     

For community-level analyses, alpha diversity (species richness) and beta 

diversity (species turnover) were both used as response variables, representing 

the degree to which the fire changed community composition.  Beta diversity was 

modelled for pre and post burn variation using presence-absence data, with the 

package betapart (Baselga and Orme, 2012).  Betapart created a Simpson 
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dissimilarity index (beta.SIM) between pre fire bird observation data and post fire 

bird data.  This was calculated separately for two post fire time periods:  pre fire 

in association with first year post fire and then pre-fire with second year post fire 

data.  The index ranged from zero to one, zero indicating complete similarity and 

one being total dissimilarity (Baselga and Orme, 2012).  The index was then used 

to run models testing for both fire and fire severity responses on community 

turnover, comparing changes in the two post fire periods. 

Of the total of 51 species recorded, 10 were observed frequently enough to 

generate species response models (Wintle et al., 2005).  The individual species 

models were all run using presence-absence data, to remove the impact of any 

outlier from individual sites having unusually greater abundances.   

Selected models were run using the random effect options (mosaic, site, or site 

within mosaic) for biodiversity measures or for the individual species, with fixed 

effects (fire or fire severity), as interactive and then additive with time (Table 2.6).  

An Information Theoretic Approach was then used, ranking candidate models for 

different random effects, measuring goodness of fit and model complexity (Zuur 

et al., 2009).  Running the package MuMIn (Barton, 2016), candidate models 

were ranked, comparing AICc (AIC with a correction for finite sample sizes) 

(Akaike, 1973) to give the most parsimonious model (Burnham and Anderson, 

2002). 

Fire (as control or burn) and fire severity (continuous data) were modelled 

separately.  Models were selected with the lowest AICc for the interaction of fire x 

time (indicating that fire response occurred over time) or fire + time (indicating a 
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fire response that is not time dependent).  With the severity models, some 

investigations resulted in the most parsimonious option not requiring time as a 

factor i.e. there was no change over time.  These models were run with severity 

as the only fixed effect. 

Table 2-6 Full model design carried out in the R statistical environment. 

Response variable Predictor variables 
Full fixed 
model Full random model 

Species richness Time (before, after1, after2) Time*fire Mosaic, site 

 Fire (burnt, unburnt)   

Species richness Time (before, after1, after2) Time*severity Mosaic, site 

 Severity (1-10)   

Species turnover (beta.SIM) Time (before, after1, after2) Time*fire Mosaic, site 

 Fire (burnt, unburnt)   

Species turnover (beta.SIM) Time (after1, after2) Time*severity Mosaic, site 

 Severity (1-10)   
10 individual species 
(presence/absence) Time (before, after1, after2) Time*fire Mosaic, site 

 Fire (burnt, unburnt)   
10 individual species 
(presence/absence) Time (before, after1, after2) Time*severity Mosaic, site 

 Severity (1-10)   

 

Percent variance explained (R²) was evaluated using the method of Nakagawa 

and Schielzeth (2013).  GLMMs were evaluated for model fit by running the 

packages piecewiseSEM (Lefcheck, 2016) or MuMIN (Barton, 2016), to 

determine marginal R² and conditional R²: marginal R² being the variance 

explained by fixed factors and conditional R² being the variance explained by 

both fixed and random factors. 
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Plate 17  The Laughing Kookaburra, Dacelo novaeguineae, is less abundant in 

dense new-growth vegetation. 

 

Source:  Lisa Rachiele, Victorian Birders   
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3 The influence of time since fire and fire 
frequency on forest bird species  

3.1 Chapter overview 

Bushfires and prescribed burns are prevalent in the Australian landscape 

(Bradstock, 2010, Teague, 2010, Holdgate et al., 2014) and their frequency is 

increasing (Clarke et al., 2011, Attiwill and Adams, 2013, Fairman et al., 2016).  

Many of the avian species, long recognised as efficient indicators of 

environmental health (Birdlife International, 2008, Drever et al., 2008, Larsen et 

al., 2010, Szabo et al., 2012, Birdlife Australia, 2015), are decreasing in 

abundance across Australia (Recher, 1999, MacNally et al., 2009, Bennett and 

Watson, 2011, Ford, 2011, Watson, 2011, Birdlife Australia, 2015, Ceballos et al., 

2017).   

The increase in the use of prescribed burns in the landscape, whilst implemented 

in attempts to ameliorate the impacts of bushfire, may ultimately result in more of 

the landscape being burnt each year.  While the objectives of a prescribed burn 

are first, to protect assets and second, to target biodiversity management 

generally (Department of Sustainability and Environment, 2012), ecological fire 

management in Australia has largely, to date, had as its focus the goal of meeting 

flora requirements as a surrogate for fauna diversity (Clarke, 2008).  The use of 

vital attributes of plants has been key to planning ecological burning practices, 

with vegetation species determined as most vulnerable to frequent fire or fire 

exclusion noted as key fire response species (Tolhurst and Cheney, 1999). As 

planning for plants does not necessarily cater for the needs of animals, the 

planning of ecological burning should consider the tolerance regimes of fauna 
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and encompass faunal population trends to ensure appropriate timing of 

prescribed burns (Clarke, 2008), to maintain between-fire intervals within which 

all faunal species will persist.   

Bird communities have been shown to become increasingly dissimilar over time 

with increases in severity and occurrence of fire (Barlow and Peres, 2004).  So, 

while it is important to define vegetation communities in terms of fire interval limits 

for plant species, this may not produce the appropriate conservation strategy for 

bird species or other fauna (Driscoll et al., 2010, Loyn, 2012).  To avoid a 

perverse outcome for avifaunal management, it is important to add to the current 

vegetation knowledge, data directly related to birds. This is because there may be 

species or communities more influenced by the cumulative effects of fire and its 

frequency (Spies et al., 2012). 

One technique to deal with a limited database, due to restrictions both temporally 

and spatially, is to focus research on selected species from within bird 

assemblages.  The use of data on more abundant birds may be an option to 

overcome limits to sampling time.  The common birds represent a crucial 

component of community networks in terms of food web structure (Tylianakis et 

al., 2010), and there is evidence that some of the most common species have 

geographic ranges that are shrinking, which requires immediate investigation 

(Ceballos, 2017).  Understanding the population trends of the common species 

may therefore enable more effective management of the entire community, 

especially when considering management processes such as prescribed burn 

protocols (Bascompte and Stouffer, 2009).  When a habitat becomes simplified, 

as it may post-fire, the specialist taxa may not remain.  Further, where a 
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community may be resilient to the random extinction of specialist species, it may 

be vulnerable if generalist species come under threat of extinction (Bascompte 

and Stouffer, 2009).    

The over-arching theme in this chapter is bird responses to time since fire and fire 

frequency.  In concert, common and moderately common species’ responses to 

both time since fire and fire frequency were analysed.  Bird responses were then 

examined as a part of the foraging guild each bird represented, to assess their 

usefulness as bioindicators, to act as a guide in management processes.  

Investigations into avian responses to both time since fire and fire frequency 

occurred in four broad stages.  The first investigation considered the most 

appropriate method of model design for this research, while also considering one 

of the project objectives – determining the value of the Cheal (2010) vegetation 

age classification as a management tool for predicting avian responses.  

Vegetation age classes determined by Cheal (2010) note categories that 

incorporate six monthly increments, for stages where vegetation changes may be 

important for the development of crucial avian resources e.g. new growth 

vegetation from approximately 2.5 years post fire creating dense ground cover in 

a vegetation type that typically has bare open ground (Table 2.1).  The ‘years 

since fire’ method commonly chosen to present data in a model, using a 

continuous age dataset, may not illustrate the distinction between critical 

elements of regrowth and new growth in a Heathy Dry Forest, unless age 

increments were small enough in the model.  A further consideration in model 

designs for this project is that vegetation age needs to also be presented as 70+ 

years.  Therefore, the first investigation in this research was a modelled 
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comparison between two methods of presenting data: a categorical versus a 

continuous age class.  To capture most of the avian community in the 

comparison, foraging guilds were modelled.  The only birds therefore, not in this 

analysis were those in the frugivore foraging guild (as only two individuals were 

observed) and the water birds (only six individuals were observed). The second 

investigation reviewed the response of the entire bird community, modelled in 

terms of species richness and then again with species classified into foraging 

guilds.  Third, ordinations were run (nMDS), with statistical support (Permanova), 

to determine species’ and guild responses and patterns across sites in response 

to time since fire and the frequency of fires.  The species which contributed most 

to the assemblage patterns in the ordinations were identified as common species.  

Finally, the remaining group of species was divided into moderately common and 

uncommon classifications.  Models of both time since fire and fire frequency 

responses were then run for the moderately common species and their 

responses compared with those from the most common species. 

There are three broad predictions for this research.  First, notwithstanding that 

eucalypt forest regeneration post-fire is rapid, the first prediction is that early post-

fire vegetation in Heathy Dry Forest is characterised by distinct structural 

elements in the vegetation and, as such, will support distinct bird assemblages 

(Bennett et al., 1994, Gilmore, 1985, Loyn et al., 2007, Reis et al., 2016).  A 

second prediction is that there will be distinct individual species’ responses to 

time since the last fire, a result of the immediate impact of fire on vegetation 

structure (Loyn and McNabb, 2015).  Bird diversity has been found to increase 

over time with the application of patchy, low severity fire (Sitters et al., 2015), and 
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an increase in biodiversity occurs with species preferences for particular 

successional states (Bradstock et al., 2005, Parr and Andersen, 2006).   It is 

reasonable to expect therefore that avian assemblage patterns may change over 

time post-fire, and that these changes will be clearly reflected in the abundance of 

individual common species.  The third prediction is that there will be little 

evidence of changes to assemblages based on fire frequency, as research 

suggests that both small planned burns on sites with a history of disturbance, 

along with intense bushfires, have short-term impacts on forest avian 

communities, and more subtle longer-term effects (Loyn and McNabb, 2015, Muir 

et al., 2015, Leonard et al., 2016).   

3.2 Results 

3.2.1 Graphing outputs: a comparison between modelling techniques using 
vegetation age classes versus continuous age data 

Avian foraging guild responses to time since fire were modelled three times. The 

first two were using vegetation aged on a continuous scale of ‘years since fire’, 

with raw data and then without.  The model was run with both, as graphs without 

the raw data outliers gave an improved visualisation of results.  The continuous 

graphs were then compared with models using ‘vegetation age class categories’ 

(Table 2.1).  The random effect of ‘site within mosaic’ was the most parsimonious 

model, in all instances.  Outputs show that models for five foraging guilds were 

most parsimonious with a ‘years since fire’ age continuum, and five were best 

with a categorical age classification (Table 3.1).   
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Table 3-1 Comparing methods of modelling vegetation age: categorical versus continuous.  
Generalized linear mixed models.   

Model selection based on random effect structure and ranked using Akaike’s Information Criteria 
(AICc).  Most parsimonious model is shaded. Distribution curves as per Watson (2012). 
 

Foraging guild 
Vegetation age 
class 

Distribution 
parameter  

Distribution 
curve 

AICc 

bark categorical Poisson       bell 2123.6 

  continuous poisson null 2135.9 

canopy continuous negative binomial irruptive 3477.3 

 
categorical negative binomial bell 3479.7 

carnivores categorical poisson bell 2286.6 

  continuous poisson null 2301.0 

damp ground continuous poisson decline 582.5 

  categorical negative binomial irruptive 625.0 

nectarivore categorical negative binomial irruptive 1351.8 

 
continuous negative binomial irruptive 1446.5 

open ground continuous negative binomial decline 824.0 

  categorical negative binomial irruptive 868.8 

open trees continuous negative binomial irruptive 3605.4 

  categorical poisson bell 3658.3 

seeds on ground continuous negative binomial irruptive 623.7 

  categorical poisson irruptive 669.2 

seeds on trees categorical negative binomial irruptive 1991.9 

  continuous negative binomial delayed 2003.0 

tall shrubs categorical negative binomial irruptive 1161.7 

  continuous negative binomial decline 1190.1 

 

Statistically, either method of presenting data is acceptable, as AICc outputs for 

each pair showed little difference between candidate models.  However, graphed 

outputs present differently.  The complete set of graphed outputs for the ten 

foraging guilds is provided in Appendix A1.  

The categorical and continuous graphs reveal similar information.  The 

abundances for birds that forage on seeds in trees illustrates this; all graphs show 

the greatest and maximum abundances <5 years post fire, decreasing in 
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abundance to around 30 years and then increasing over time in vegetation older 

than 35 years (Fig 3.1).  

 

 

Figure 3.1 Models of ‘Seeds in tree’ forager data with vegetation as continuous age, with 
and without raw data and with a categorical age class for vegetation.   

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic) and ranked using Akaike’s Information Criteria (AICc). 
 
 

It is the detail within each graph that varies across each comparison.  Inherent in 

the design of a continuous timescale of yearly intervals, that needs to extend for 

75 years, the six-month increment, relevant to regrowth vegetation appearing six 

months post fire (as epicormic growth in eucalypt species), will be masked (Fig 

3.2). 
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Figure 3.2 Models of Tall shrub forager data with vegetation as continuous age, with and 
without raw data and with a categorical age class for vegetation.   

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic) and ranked using Akaike’s Information Criteria (AICc). 

 

A further example of differences in detail, is the distinction between stages under 

ten years post-fire.  The ‘new growth’ stage of heathy dry forest vegetation post-

fire is the time during which ground cover is at its greatest extent, as new shoots 

develop (Table 2.1).  Based on a categorical measure, this period is the 2.5-10 

year age class.  The comparative graphs for nectarivores all show an increase in 

abundance in the first ten years (Fig 3.3).  The categorical output shows an 

increase in abundance in the 2.5-10 year age class and the continuous graph 
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shows the greatest abundances within the first ten years.  However, more 

information is revealed in the categorical example, as the response is shown to 

be greater in ‘new growth’ as opposed to the slightly younger ‘regrowth’ 

vegetation. 

 

    

Figure 3.3 Models of Nectarivore data with vegetation as continuous age, with and without 
raw data and with a categorical age class for vegetation.   

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic) and ranked using Akaike’s Information Criteria (AICc). 
 

Bird responses displayed similarly in each comparison across foraging guilds 

(Appendix A1).  However, variations exist in the shape of the distribution 

response curves.  Guild responses showed in the continuous graphs as: ‘delayed’ 

(Fig 3.1), ‘decline’ (Fig 3.2) and ‘irruptive’ (Fig 3.3).  Further to these, the ‘bark 
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foragers’ continuous age graph presented as ‘null’ (Appendix A1, Table 3.1), 

(Watson et al., 2012).  The categorical graphs highlight that these response 

curves are triggered by the 2.5-10 year old age class e.g. nectarivore curve is bell 

shaped, possibly irruptive, triggered by the 2.5-10 year old age class (Fig 3.3).  

Considering the importance of this age class, all analyses in this research were 

completed using time since fire age classifications. 

3.2.2 Broad community responses to TSF and fire frequency 

Overall community responses 

Between winter 2012 and summer 2014, a total of 10,296 birds was recorded 

across a total of 56 species within 12 foraging guilds (Table 3.2).  For a site 

comparison of TSF categories, a significant difference between age classes was 

only found between the newly burnt vegetation and the other classes (Fig 3.4, 

Table 3.2).  Sites newly burnt had distinct structural changes and sites that were 

more than 6 months old had extensive epicormic regrowth and therefore, possibly 

higher numbers of lerp, which supported a higher bird abundance across the 

TSF2 and 3 age classes.  A review of bird responses to fire frequency showed 

that there was little difference across fire frequency classes (Fig 3.5). 

Generalized linear mixed modelling of fire frequency yielded no significant levels 

of difference between any of the frequency classes.  So, as a community, birds 

do not appear to be responding to fire frequency in the terms of this method of 

classification.  Furthermore, the tolerable fire intervals measure used for 

determining the minimum time required for vegetation to regenerate post-fire, 

appears not to be a useful measure for bird abundance differences. 
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Table 3-2 Species and foraging guilds of Victoria’s Heathy Dry Forest.   

Data are pooled abundances cross 672 monitoring sessions, on 84 sites in Central Victoria.  Grouped into abundance classes: U - uncommon, M - moderately 
common, C - common.  Common species classified as those contributing to approximately 80+% of community assemblage patterns and displaying significant 
differences in TSF vegetation age classes.  Moderately common were birds from the remainder of the species, observed on more than 10% of sites. ‘Sites’ shows 
the number of sites, each species was observed at. 
 

  Foraging guild   Common name Scientific name Total  Class Sites 

B Bark forager takes invertebrates from bark on trunks and branches  Varied Sittella Daphoenositta chrysoptera 82 M 15 

      White-throated Treecreeper Corombates leucophaea 884 C  84 

C Canopy forager takes invertebrates from foliage of eucalypts and other large trees Black-faced Cuckoo-shrike Coracina novaehollandiae 9 U  6 

   Satin Flycatcher Myiagra cyanoleuca 2 U  2 

   Shining Bronze Cuckoo Chalcites lucidus 12 U  8 

   Weebill Smicrornis brevirostris 7 U  1 

   Rufous Whistler Pachycephala rufiventris 145 M 47 

   Striated Pardalote Pardalotus striatus 24 M 17 

   Grey Fantail Rhipidura albiscapa 560 C  77 

   Spotted Pardalote Pardalotus punctatus 422 C  79 

   Striated Thornbill Acanthiza lineata 1809 C  82 

DG Damp ground takes invertebrates from damp ground below shrubs, among dense Common Blackbird Turdus merula 1 U  1 

 insectivores  understorey or among damp litter Eastern Yellow Robin Eopsaltria australis 65 M 31 

      White-browed Scrubwren Sericornis frontalis 41 C 21 

F Frugivore takes soft fruit along with other food such as nectar, invertebrates or seeds Mistletoebird Dicaeum hirundinaceum 2 U  2 

N Nectarivores takes nectar along with other food such as seeds (parrots) and fruit  Little Lorikeet Glossopsitta pusilla 2 U  1 

  or invertebrates Little Wattlebird Anthochaera chrysoptera 2 U  2 

   New Holland Honeyeater Phylidonyris novaehollandiae 17 U  5 

   Brown-headed Honeyeater Melithreptus brevirostris 58 M 28 

   Eastern Spinebill Acanthorhynchus tenuirostris 35 M 22 

   Red Wattlebird Anthochaera carunculata 123 M 25 

   White-naped Honeyeater Melithreptus lunatus 39 M 17 

   Yellow-faced Honeyeater Lichenostomus chrysops 67 M 24 

   White-eared Honeyeater Lichenostomus leucotis 207 C  51 

OG Open ground takes invertebrates from open ground, quite often far from tree or shrub  Southern Whiteface Aphelocephala leucopsis 4 U  1 

  cover Yellow-rumped Thornbill Acanthiza chrysorrhoa 9 U  4 

      Australian Magpie Cracticus tibicen 233 C 45 
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OT Open trees takes invertebrates from open ground among trees or scattered tall shrubs,  Flame Robin Petroica phoenicea 4 U  3 

  but not from damp ground below dense cover, and does not usually venture  Hooded Robin Melanodryas cucullata 2 U  1 

  far from woody vegetation Pallid Cuckoo Cacomantis pallidus 11 M 11 

   Spotted Quail-thrush Cinclosoma punctatum 17 M 10 

   Buff-rumped Thornbill Acanthiza reguloides 2339 C 83 

   Scarlet Robin Petroica boodang 361 C 81 

   Superb Fairy-wren Malurus cyaneus 196 C 47 

      White-winged Chough Corcorax melanorhamphos 379 C 23 

SG Seeds ground takes seeds from ground or low plants such as grasses, herbs and saltmarsh Blue-winged Parrot Neophema chrysostoma 16 U  6 

   Common Bronzewing Phaps chalcoptera 37 M 22 

   Diamond Firetail Stagonopleura guttata 4 U  2 

   Galah Eolophus roseicapillus 19 U  7 

   Red-browed Finch Neochmia temporalis 7 U  3 

      Sulphur-crested Cockatoo Cacatua galerita 35 M 17 

ST Seeds trees seeds from trees/shrubs or wide range of strata, or other food such as  Crimson Rosella Platycercus elegans 797 C 83 

    gall insects or insect larvae extracted from wood          

TS Tall shrubs takes invertebrates from foliage of tall shrubs, which may form middle  Yellow Thornbill Acanthiza nana 1 U  1 

  storey of eucalypt forests Fan-tailed Cuckoo Cacomantis flabelliformis 72 C 46 

   Golden Whistler Pachycephala pectoralis 21 M 10 

      Brown Thornbill Acanthiza pusilla 203 C 68 

V Carnivore carnivore, taking vertebrates as an important part of diet, often along   Brown Goshawk Accipiter fasciatus 1 U  1 

  with large invertebrates and other food such as fruit  Sacred Kingfisher Todiramphus sanctus 2 U  2 

   Southern Boobook Ninox novaeseelandiae 2 U  2 

   Wedge-tailed Eagle Aquila audax 1 U  1 

   Australian Raven Corvus coronoides 83 M 23 

   Pied Currawong Strepera graculina 23 M 15 

   Grey Currawong Strepera versicolor 212 C 63 

   Grey Shrike-thrush Colluricincla harmonica 413 C 79 

   Laughing Kookaburra Dacelo novaeguineae 171 C 45 

W Water water bird inhabiting inland waters Australian Wood Duck Chenonetta jubata    6 U  1 

        

 



 

 

3-104 

 

 

Figure 3.4 Bird community responses to five TSF vegetation age classes.  

Generalized linear mixed models.  Model selection based on random effect structure (mosaic) and 
ranked using Akaike’s Information Criteria (AICc).  TSF categories: tsf1 0-6 months, tsf2 6 months – 
2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ years, combined with last burn not 
recorded. 

 

Figure 3.5 Bird community responses to five fire frequency classes. 

Generalized linear mixed models.  Model selection based on random effect structure (mosaic) and 

ranked using Akaike’s Information Criteria (AICc).  Classifications: ff1 unburnt or burnt over 34 
years ago; ff2 one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 

years ago;  ff3 2-4 fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 

years post prescribed burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 

years ago with TFI breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached 
within last 19 years. 
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Avian responses in terms of foraging guilds 

Generalized linear mixed models were developed to investigate broad foraging 

guild responses across the TSF age classes.  Two foraging guilds, water birds 

and frugivores, were not modelled, as monitoring returned numbers of only six 

and two individuals respectively.  The random effect of ‘site within mosaic’ was 

the most parsimonious model, in all instances. 

As ten guilds were modelled and graphed and each tested with five reference 

levels to determine significant differences between TSF and fire frequency 

categories, only the significant results are tabled for TSF and fire frequency 

(Table 3.3, 3.4).  However, graphed outputs, for each guild in terms of TSF and 

fire frequency, are included in Appendix A2. 

Among the remaining ten guilds, all showed significant differences in 

assemblages surveyed in newly burnt vegetation compared with other age 

classes (Table 3.3).  It was clear when monitoring sites that a number of the 

burns, occurring on sites that categorized the TSF1 age class, had resulted in 

extensive ground vegetation removal, bark scorch and canopy burn.  All feeding 

groups would have been greatly impacted in terms of food availability, protection 

and nest site availability in the first six months post fire.   

Responses by the foraging guilds fell into three broad groups.  The first group 

was those that were less abundant in post fire vegetation, with no apparent 

differences in other vegetation age classes.  This group comprised insectivores 
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that forage from bark and canopy, and on open ground (may be far from cover) 

and open ground among trees (Table 3.3).   

The second broad group comprised those that not only responded with a 

significant drop in abundance in newly burnt vegetation, but further, showed 

significant increases in the regrowth vegetation as opposed to the older, less 

dense vegetation.  This group comprised insectivores that feed from tall shrubs 

(Fig 3.6i), insectivores that feed from damp ground, seed-eaters that feed close to 

the ground, and nectarivores (Table 3.3, Fig 3.6ii).  Nectarivores were seen to be 

most common in regrowth of 2.5 to 10 years, observed on sites as having the 

densest vegetation, where eucalypts were flowering at the time of surveys.    

Table 3-3 Bird community and foraging guild responses to five TSF vegetation age classes.  

Generalized linear mixed models.  Model selection based on random effect structure (‘mosaic’ for 
community and ‘site within mosaic’ for foraging guilds) and ranked using Akaike’s Information Criteria 
(AICc).  Reference is the TSF age class used as the model reference; positive estimates indicate 
reference mean is the lowest. Only variations between age classes giving a 95% and greater 
confidence level are reported.  TSF categories: (1) 0-6 months, (2) 6 months – 2.5 years, (3) 2.5 
years to 10 years, (4) 10 to 35 years, (5) 35+ years, combined with last burn not recorded.  Refer to 
Table 4.1 for scientific names. 

 

    Abundances per TSF age classes     

Community Foraging Guild Akaike weight Ref TSF Low TSF High Estimate SE P 

Forest birds 0.74 1 1 2 0.82 0.10 3.86E-16 

   1 1 3 0.87 0.10 <2E-16 

   1 1 4 0.76 0.10 1.42E-13 

      1 1 5 0.74 0.12 1.81E-10 

 Bark 1.00 1 1 2 0.59 0.16 0.02E-2 

   1 1 3 0.47 0.18 0.023 

 Canopy 1.00 2 1 2 -0.41 0.21 0.040 

   2 3 2 -0.40 0.15 0.009 

   2 4 2 -0.48 0.16 0.003 

      2 5 2 -0.65 0.18 0.04E-2 

 Damp ground 1.00 3 1 3 -2.44 0.81 0.003 

   3 2 3 -0.91 0.42 0.030 

   3 4 3 -0.96 0.45 0.036 

      3 5 3 -1.76 0.67 0.009 

   1 1 2 1.53 0.76 0.042 

 Nectarivores 1.00 3 1 3 -1.82 0.03E-1 <2E-16 

   3 2 3 -0.85 0.03E-1 <2E-16 
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   3 4 3 -0.68 0.03E-1 <2E-16 

      3 5 3 -0.89 0.03E-1 <2E-16 

   1 1 2 0.96 0.003 <2E-16 

   1 1 4 1.13 0.003 <2E-16 

   1 1 5 0.91 0.003 <2E-16 

 Open tree 1.00 1 1 2 0.74 0.23 0.001 

   1 1 3 0.56 0.25 0.023 

 Seeds on ground 1.00 1 1 2 2.35 1.03 0.022 

   1 1 3 2.40 1.07 0.025 

   2 4 2 -1.45 0.53 0.005 

   3 4 3 -1.50 0.49 0.002 

      5 4 5 -1.22 0.58 0.040 

 Seeds trees 1.00 2 3 2 0.53 0.19 0.004 

   4 4 2 0.70 0.19 0.02E-2 

      4 4 5 0.46 0.21 0.025 

 Tall shrubs 0.94 1 1 2 2.78 0.73 0.01E-2 

   1 1 3 2.54 0.74 0.05E-2 

   1 1 4 2.30 0.74 0.002 

   1 1 5 1.77 0.77 0.020 

   2 5 2 1.01 0.29 0.5E-3 

      3 5 3 0.77 0.28 0.5E-2 

 Carnivore 1.00 1 1 2 0.60 0.17 <0.2E-3 

      2 4 2 -0.47 0.16 0.003 

 

One of the common species in the guild of insectivores that forage from damp 

ground, the White-browed Scrubwren, was mainly found amongst dense regrowth 

stands of bracken (Pteridium esculentum).  Both flowering regrowth and bracken 

were less prevalent in the older, more open vegetation than in regrowth of 

intermediate age.   

The third broad group of TSF foraging guild responses involved two guilds (seed-

eaters that feed in trees and the carnivores) that were scarce in recently burnt 

stands and showed complex patterns in older regrowth.  Both guilds showed a 

preference for young regrowth and old vegetation stands (TSF2 and TSF5) rather 

than intermediate age classes (Fig 3.6 iii, iv, Table 3.3), perhaps reflecting their 

need for open stands within regrowth.   
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The fire frequency models were designed to investigate a fire frequency response 

and further, to determine whether the TFI parameter applied to vegetation age 

classes is an appropriate classifier for bird responses (Table 3.4).  Modelling the 

entire community against fire frequency showed little variation between classes 

suggesting no apparent frequency or TFI responses (Fig 3.5).  A similar lack of 

response to frequent fires was shown by a number of foraging guilds:  the seed-

eaters and foragers that feed on open ground, as well as those that feed on 

seeds in trees, along with the nectarivores.   

Table 3-4 Bird community and foraging guild responses to five fire frequency classes.  

Generalized linear mixed models.  Model selection based on random effect structure (‘mosaic’ for 
community and ‘site within mosaic’ for foraging guilds) and ranked using Akaike’s Information Criteria 
(AICc).  Reference is the fire frequency age class used as the model reference; positive estimates 
indicate reference mean is the lowest. Only variations between age classes giving a 95% and greater 

confidence level are reported.  Fire frequency categories:  ff1 unburnt or burnt over 34 years 
ago; ff2 one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 years 

ago;  ff3 2-4 fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post 

prescribed burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago 

with TFI breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 
19 years. 
Refer to Table 4.1 for scientific names.  
   

   Abundances per fire frequency class   

Foraging Guild Akaike weight Ref TSF Low TSF High Estimate SE P 

Bark 0.77 5 2 5 -0.47 0.22 0.028 

  5 4 5 -0.48 0.23 0.043 

Nectarivore                    1.00 5 1 5 -0.24 0.01 2.00E-16 

  5 2 5 0.19 0.01 2.00E-16 

  5 3 5 0.51 0.01 2.00E-16 

  5 4 5 0.02 0.01 7.3E-06 

Seeds ground                    1.00 5 1 5 -0.74 0.01 2.00E-16 

  5 2 5 -0.35 0.01 2.00E-16 

  5 3 5 -0.86 0.01 2.00E-16 

  5 4 5 -0.56 0.01 2.00E-16 

Seeds trees                    1.00 1 2 1 -0.44 0.22 0.049 

Carnivore 1.00 1 2 1 -0.43 0.21 0.036 

  1 4 1 -0.51 0.24 0.032 

 

Whilst few guilds showed significant differences between fire frequency 

categories, six of the ten guilds revealed increased abundances in ff5 (frequently 
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burnt) sites: bark, canopy, damp ground, open tree, seed on ground, tall shrubs 

and carnivorous feeders (Appendix 2).  This response ties in with the responses 

by each of these guilds in that they all had abundance increases in regrowth 

vegetation (tsf2) and/or new growth vegetation (tsf3) (Table 3.3).  While there 

was a clear preference for sites burnt frequently, there was no distinction 

between those with TFI’s and those where TFI’s were not maintained (Fig 3.7i, ii, 

iii). 

The model for the guild of carnivorous birds resulted in a significant increase in 

abundance on unburnt sites over sites with one burn in the last 20 years (ff2) as 

well as sites with 0-2 burns (with any TFI breach over 20 years prior) (ff4), (Fig 

3.7iv).  This result aligns with this guild’s response to TSF in that there was a 

preference for sites with open ground – tsf2, tsf5 (Fig 3.6iv). 

Bark foragers showed an increase in sites with multiple burns (TFI’s broken) 

compared with other fire frequency classes (Fig 3.7iii).  Further, there was little 

distinction between unburnt (ff1) and frequently burnt sites (ff5).  This guild also 

showed little difference in abundances across TSF age classes other than clearly 

lower abundances on newly burnt sites (Table 3.3).  The reduced abundances in 

bark foragers across sites with infrequent burning (ff2, ff3 ff4) suggests that 

habitat for bark foragers can be produced either by frequent burning or by leaving 

sites unburnt for long periods, but not by intermediate strategies of infrequent 

burning. 



 

 

3-110 

 

Overall, there was little evidence, at the broad community scale, of response to 

fire frequency and no evidence that vegetation TFI’s are an appropriate predictor 

of bird abundances. 

 

  (i)              (ii) 

                     

  (iii)                                    (iv)    

                                   

Figure 3.6 Foraging guild responses to TSF vegetation age classes.   

Generalized linear mixed models.  Model selection based on random effect structure (site within mosaic) and 
ranked using Akaike’s Information Criteria (AICc).  TSF categories: 1 0-6 months, 2 6 months – 2.5 years, 3 
2.5 years to 10 years, 4 10 to 35 years, 5 35+ years, combined with last burn not recorded. 
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 (i)       (ii) 

              

(iii)        (iv) 

               

Figure 3.7 Foraging guild responses to fire frequency classes.   

 
Generalized linear mixed models.  Model selection based on random effect structure (site within mosaic) and 

ranked using Akaike’s Information Criteria (AICc).  Fire frequency categories:  ff1 unburnt or burnt over 34 
years ago; ff2 one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 years ago;  

ff3 2-4 fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed 

burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI breached 

>22 years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 
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3.2.3  Community responses to TSF ordinations illustrating patterns over 
 time 

Species’ responses - time since fire 

The nMDS ordination of the similarity between species assemblages on each 

site, with TSF categories as a factor, indicated compositional differences between 

several TSF age classes (Fig 3.8).  

  

Figure 3.8 Similarity in species assemblages on each site, with factor of TSF vegetation age 
classes.   

 
nMDS ordination of species on sites with TSF.  TSF categories: (1) 0-6 months, (2) 6 months – 2.5 
years, (3) 2.5 years to 10 years, (4) 10 to 35 years, (5) 35+ years, combined with last burn not 
recorded.  3D equivalent ordination had 0.18 stress level. 
 
 

As uncommon species tend to plot as outliers they tend to skew the plot e.g. 

TSF2; the ordination shows a central cluster of points, where some site 

assemblages were common to all TSF ages. 
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The clustering of individual sites into unique TSF age class groupings, e.g. TSF3, 

indicated unique assemblage compositions as a property of TSF (Fig 3.8).  This 

ordination suggests some temporal changes to assemblage patterns, an example 

being the newly burnt (hence open), clear ground (TSF1) group as distinct (on 

some sites) to the 2.5-10 year since fire (ysf) dense regrowth vegetation (TSF3).  

The ordination illustrates how the oldest vegetation (TSF5) had the least variation 

in assemblage patterns, sharing species with all stages.  The lack of assemblage 

variation among the sites with TSF4 and TSF5 age classes is clear with all TSF4 

and TSF5 sites grouped within the central cluster of sites of other age classes.  

This showed that the greatest differences in assemblage patterns existed 

between the newly burnt (0 – 6 month) and the dense regrowth (2.5 – 10 year) 

vegetation.  Amongst the regrowth vegetation, the White-eared Honeyeater was 

observed most consistently across all sites of this age class, with a greater 

abundance observed in the winter months.  Further, the regrowth vegetation sites 

were not geographically clustered, as every broad location (Linton, Enfield, 

Creswick, Durham Lead, Lal Lal, Mt Egerton and the Brisbane Ranges) had 

representative sites of this age class.  

This result was supported by the outcomes of the Permanova+ analysis which 

demonstrated a significant effect for TSF (pseudo-F=1.666, P=0.0096) and also 

for season (pseudo-F=8.7026, P=0.0002).    

Pairwise testing was performed to identify the age classes which provided the 

greatest contribution to dissimilarity between assemblages.  The greatest 

contrasts were found between TSF1 (newly burnt age class) and TSF3 (2.5-10 

ysf), (t=2.6826, P=0.001).  There were also clear dissimilarities in assemblage 
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structure between TSF1 and TSF5 (35+ysf), (t=1.6455, P=0.007) and between 

TSF1 and TSF2 (.5-2.5 ysf), (t=1.6988, P=0.008). 

Fifteen species contributed to the 79% cut-off used to measure dissimilarity in 

bird assemblages across sites using a SIMPER one-way analysis, comparing the 

newly burnt vegetation (TSF1) and the other three age classes (TSF3, 5 and 2) 

(Table 3.5).  Of these, twelve species were present in all comparisons. This group 

comprised the Australian Magpie, Buff-rumped Thornbill, Crimson Rosella, Grey 

Fantail, Grey Currawong, Grey Shrike-thrush, Laughing Kookaburra, Scarlet 

Robin, Spotted Pardalote, Striated Thornbill, White-throated Treecreeper, and the 

White-winged Chough.  Further to these, the Superb Fairy-wren and the White-

eared Honeyeater contributed to the dissimilarity between TSF1 (newly burnt) 

and TSF3 (2.5-10 ysf), and the Brown Thornbill to dissimilarity between TSF1 and 

TSF3 along with TSF1 compared with TSF2 (.5-2.5 ysf) (Table 3.5).  Of the total 

White-eared Honeyeaters and Superb Fairy-wrens observed (Table 3.2), the 

greatest abundances for both these species appeared in the flowering vegetation 

of TSF3 (Fig 3.17).  The Brown Thornbill had a preference for vegetation classes 

TSF2 and TSF3 (Fig 3.15) and was mainly observed on sites feeding in foraging 

flocks on post-fire insects and lerps.   
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Table 3-5 SIMPER results of Bray-Curtis similarity percentages giving species contributions to sites with different TSF vegetation age classes.   

One-way analysis with data transformed log(x+1).  Bird acronyms: BFTH Buff-rumped Thornbill, STTH Striated Thornbill, CRRO Crimson Rosella, GYFA Grey 
Fantail, WTTR White-throated Treecreeper, GYST Grey Shrike-thrush, WEHO White-eared Honeyeater, SPPA Spotted Pardalote, SCRO Scarlet Robin, WWCH 
White-winged Chough, SUFW Superb Fairy-wren, GYCU Grey Currawong, AUMA Australian Magpie, LAKO Laughing Kookaburra, BRTH Brown Thornbill.  

Groups 3  &  1           Groups 1  &  2           
Average dissimilarity = 64.58       Average dissimilarity = 62.05       

  Gp 3  Gp 1                     Gp 1  Gp 2                                
Species Av.Abun Av.Abun Av.Diss Diss/SD Cont% Cum.% Species Av.Abun Av.Abun Av.Diss Diss/SD Cont% Cum.% 
BFTH 1.40 0.74 7.81 1.30 12.10 12.10 BFTH 0.74 1.49 7.61 1.27 12.27 12.27 
STTH 1.03 1.16 6.76 1.27 10.46 22.56 STTH 1.16 1.30 5.91 1.17 9.53 21.79 
CRRO 0.61 0.63 4.47 1.29 6.93 29.49 CRRO 0.63 0.89 4.88 1.29 7.87 29.66 
GYFA 0.46 0.43 4.12 1.01 6.37 35.86 SPPA 0.14 0.70 4.47 1.24 7.20 36.86 
WTTR 0.72 0.68 3.63 1.28 5.62 41.48 GYFA 0.43 0.47 3.82 0.97 6.16 43.02 
GYST 0.47 0.16 3.40 1.22 5.27 46.75 WTTR 0.68 0.91 3.57 1.22 5.76 48.78 
WEHO 0.32 0.07 2.84 0.72 4.40 51.16 WWCH 0.34 0.32 3.34 0.60 5.38 54.16 
SPPA 0.38 0.14 2.78 1.12 4.31 55.47 GYST 0.16 0.53 3.24 1.21 5.21 59.37 
SCRO 0.38 0.33 2.69 1.22 4.16 59.63 AUMA 0.22 0.31 2.66 0.74 4.29 63.66 
WWCH 0.10 0.34 2.60 0.50 4.03 63.66 SCRO 0.33 0.48 2.64 1.18 4.26 67.92 
SUFW 0.27 0.15 2.17 0.88 3.36 67.03 LAKO 0.24 0.22 2.32 0.83 3.74 71.65 
GYCU 0.19 0.23 2.12 0.90 3.29 70.31 GYCU 0.23 0.31 2.31 1.03 3.73 75.38 
AUMA 0.14 0.22 2.09 0.63 3.24 73.55 BRTH 0.04 0.34 2.21 1.05 3.56 78.94 
LAKO 0.10 0.24 1.95 0.64 3.02 76.57        
BRTH 0.26 0.04 1.90 0.93 2.94 79.51        
Groups 4  &  1           Groups 5  &  1           
Average dissimilarity = 59.96       Average dissimilarity = 59.24       

  Gp 4  Gp 1                                  Gp 5  Gp 1                                
Species Av.Abun Av.Abun Av.Diss Diss/SD Cont% Cum.% Species Av.Abun Av.Abun Av.Diss Diss/SD Cont% Cum.% 
BFTH 1.31 0.74 8.22 1.21 13.71 13.71 BFTH 1.23 0.74 7.31 1.29 12.34 12.34 
STTH 1.25 1.16 6.97 1.19 11.62 25.33 STTH 1.04 1.16 6.3 1.35 10.63 22.98 
CRRO 0.56 0.63 4.83 1.16 8.06 33.38 CRRO 0.77 0.63 4.98 1.38 8.40 31.38 
GYFA 0.39 0.43 3.95 1.05 6.58 39.96 GYFA 0.37 0.43 3.94 1.06 6.66 38.03 
WTTR 0.81 0.68 3.72 1.08 6.20 46.16 WWCH 0.33 0.34 3.82 0.64 6.44 44.47 
GYST 0.42 0.16 3.17 1.25 5.29 51.45 WTTR 0.82 0.68 3.36 1.07 5.67 50.14 
SPPA 0.34 0.14 2.85 1.11 4.75 56.20 SPPA 0.37 0.14 3.05 1.25 5.14 55.28 
SCRO 0.33 0.33 2.79 1.17 4.66 60.86 SCRO 0.45 0.33 2.96 1.31 5.00 60.29 
WWCH 0.12 0.34 2.79 0.50 4.65 65.51 LAKO 0.25 0.24 2.85 0.91 4.81 65.10 
LAKO 0.22 0.24 2.74 0.82 4.56 70.07 GYST 0.34 0.16 2.74 1.22 4.63 69.72 
AUMA 0.20 0.22 2.55 0.69 4.25 74.32 GYCU 0.25 0.23 2.55 0.97 4.30 74.02 
GYCU 0.20 0.23 2.36 0.89 3.94 78.26 AUMA 0.13 0.22 2.14 0.63 3.61 77.63 
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Species’ responses – fire frequency 

Similar analyses of investigative ordinations with statistical support, were run with 

fire frequency factors.  Permanova+ results for the whole community suggested 

that while there was a seasonal variation across mosaics (Pseudo f=1.61, 

P=0.001), there was no fire frequency effect evident with the complete dataset 

(Pseudo f=1.20, P=0.192).  Results from pairwise testing indicated significant 

dissimilarities between unburnt sites (ff1) and frequently burnt sites (ff5) (t=1.06, 

P=0.041), in winter months.  This suggests that species are responding to 

vegetation changes in winter months; a response not apparent in the summer 

months. It may be that food resources are scarce in the winter months, driving 

birds to areas of winter flowering. In summer months, after spring vegetation 

flowering and regrowth, food resources are more readily available across the 

landscape. This aligns with the result whereby the greatest differences in 

assemblage patterns existed between the newly burnt and regrowth vegetation. 

White-eared Honeyeaters were common in the regrowth vegetation, and were 

observed more frequently in winter months.  

Results from a SIMPER analysis indicated that there were 17 species 

contributing to 85% of the dissimilarity between ff1 and ff2 in the winter months.  

These comprised the fifteen species listed as important in the TSF analyses as 

well as the Fan-tailed Cuckoo and the White-browed Scrubwren. As the Fan-

tailed Cuckoo is a seasonal migrant, this result may be independent of seasonal 

vegetation structure.  
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3.2.4 Classification of species into three abundance classes  

Influential species contributing to 80% of assemblage patterns 

Seventeen species were identified as contributing  approximately 80+% of 

assemblage patterns based on the SIMPER analysis.  Not surprisingly, many in 

this group were species whose abundances across all site observations were the 

greatest (Table 3.2).  However, some of this cohort were not in the highest 

abundances, but were instrumental in assemblage patterns:  e.g. Australian 

Magpie, Superb Fairy-wren, Laughing Kookaburra and the White-eared 

Honeyeater.  These four species each contributed only 2% of the total community 

abundance.  This is in contrast to abundance levels of a number of the species 

observed much more frequently:  the Buff-rumped Thornbill (22% of 

observations), Striated Thornbill (17%) and White-throated Treecreeper and 

Crimson Rosella (each 8%) (Table 3.2).  Considering this, models were run to 

check for significant levels of difference between TSF age classes for the 

common species. 

Species grouped as ‘common’, ‘moderately common’ and 

‘uncommon’ 

Once the most influential species had been classified, the remaining species 

were separated into two groups: ‘moderately common’ being those that had been 

observed on >10% of the sites, leaving the remainder as ‘uncommon’ (Table 3.2).  

The ‘common’ and the ‘moderately common’ species were all modelled as 

GLMM’s using TSF and then fire frequency categories in the modelling.  The 
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exception to this were the Spotted Quail-thrush for fire frequency and the Golden 

Whistler for TSF.  The data were too few for these species, when modelled with 

these factors.  While only significant results are reported in tables, all graphs are 

included (Appendix A3).  Subsequent discussions include references to 

responses by species that may not have statistical significance but are relevant to 

the discussion. 

3.2.5 A review of responses to TSF and fire frequency by the ‘common’ and 
‘moderately common’ forest bird species 

Of the 17 species listed as common (Table 3.2), 15 species not only contributed 

to the majority of the variations in assemblage patterns, but also displayed 

significant TSF age class differences (Table 3.6).  Of the remaining species 

observed, 16 were classified as ‘moderately common’, as these were observed 

on over 10% of the 84 sites (Table 3.2).  To determine if generalizations could be 

made about foraging guild responses to TSF and fire frequency, and if in fact 

common species responses could be indicative of entire assemblage patterns, 

common and moderately common species were grouped into their foraging guilds 

and all were modelled against TSF and fire frequency (Table 3.6, 3.7). 

The results for the fire frequency modelling showed fewer species responding 

significantly, using this categorical method.  However, some species did display 

fire frequency responses and these are referred to in relevant sections. 
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Table 3-6 Common and moderately common species with lowest and highest abundance 
TSF vegetation age class and the statistical significance between the age classes.   

Generalized linear mixed models of species. Model selection based on random effect structure (RE) 
and ranked using Akaike’s Information Criteria (AICc).  Reference (Ref) is the TSF age class used as 
the model reference; positive estimates indicate reference mean is the lowest.  Only variations 
between TSF age classes giving a 95% and greater confidence level are reported.  TSF categories: 
(1) 0-6 months, (2) 6 months – 2.5 years, (3) 2.5 years to 10 years, (4) 10 to 35 years, (5) 35+ years, 
combined with last burn not recorded.  Refer to Table 3.2 for scientific names.  
 

 Common species                                                                 Abundances per TSF age class 

Foraging Guild Common name 
Akaike 
weight Ref 

TSF 
Low 

TSF 
High Estimate SE P 

Open Trees Buff-rumped Thornbill 1.00 1 1 2 2.10 0.14 <2E-16 

 (RE mosaic/site)  1 1 3 2.13 0.16 <2E-16 

   1 1 4 1.78 0.16 <2E-16 

   1 1 5 2.10 0.22 <2E-16 

 Scarlet Robin 0.97 1 1 2 1.30 0.25 2.26E-07 

 (RE mosaic)  1 1 3 1.29 0.26 8.34E-07 

   1 1 4 1.14 0.27 2.70E-05 

   1 1 5 1.59 0.29 4.99E-08 

 Superb Fairy-wren 0.76 1 1 3 2.99 0.97 2.05E-03 

 (RE mosaic)  1 1 4 1.79 0.91 4.83E-02 

   1 1 5 2.46 1.05 1.90E-01 

 White-winged Chough 1.00 3 3 1 1.69 0.58 3.50E-03 

 (RE mosaic/site)  3 3 2 2.45 0.55 7.23E-06 

   3 3 4 1.42 0.66 3.06E-02 

Seeds in trees Crimson Rosella 1.00 2 1 2 -1.54 0.16 <2E-16 

 (RE mosaic/site)  2 3 2 -0.36 0.14 1.09E-02 

   2 4 2 -0.63 0.17 2.00E-04 

   5 1 5 -1.61 0.22 8.66E-13 

   5 3 5 -0.43 0.18 1.84E-02 

   5 4 5 -0.70 0.20 3.93E-04 

Canopy Grey Fantail 1.00 2 1 2 -1.57 0.21 1.42E-13 

 (RE mosaic/site)  2 4 2 -0.74 0.25 2.90E-03 

 Spotted Pardalote 1.00 2 1 2 -2.88 0.36 1.30E-15 

 (RE mosaic/site)  2 3 2 -0.55 0.19 3.20E-03 

   2 4 2 -0.77 0.22 5.00E-04 

   2 5 2 -0.62 0.25 1.44E-02 

 

Striated Thornbill 
(RE mosaic/site) 1.00 5 5 1 -0.84 0.20 2.79E-05 

Nectarivore White-eared Honeyeater 1.00 3 1 3 -2.77 0.69 5.55E-05 

 (RE mosaic/site)  3 2 3 -0.93 0.46 4.31E-02 

Carnivores Grey Currawong 1.00 1 1 2 1.45 0.33 8.26E-06 

 (RE mosaic/site)  1 1 3 1.18 0.37 1.39E-03 

   1 1 4 1.00 0.38 9.58E-03 

   1 1 5 1.44 0.43 9.10E-04 

 Grey Shrike-thrush 0.97 1 1 2 2.22 0.32 2.77E-12 

 (RE mosaic/site)  1 1 3 2.24 0.33 1.38E-11 

   1 1 4 2.12 0.33 1.69E-10 

   1 1 5 1.89 0.37 2.67E-07 

 Laughing Kookaburra 1.00 1 1 2 20.37 4.04 4.74E-07 
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 (RE mosaic/site)  1 1 4 20.11 3.92 2.90E-07 

   1 1 5 22.13 5.11 1.52E-05 

   3 3 2 20.71 3.75 3.23E-08 

   3 3 4 20.45 3.57 1.02E-08 

   3 3 5 22.47 4.86 3.72E-06 

Bark forager White-throated Treecreeper 1.00 1 1 2 1.38 0.17 <2E-16 

 (RE mosaic/site)  1 1 3 1.30 0.18 7.13E-13 

   1 1 4 1.32 0.18 3.29E-13 

   1 1 5 1.52 0.17 5.73E-06 

Open ground  Australian Magpie 1.00 2 1 2 -1.83 0.30 6.84E-10 

 (RE mosaic/site)  2 4 2 -0.96 0.43 2.43E-02 

Tall shrubs Brown Thornbill 0.51 1 1 2 3.32 0.72 3.45E-06 

 (RE mosaic)  1 1 3 3.40 0.72 2.51E-06 

   1 1 4 2.99 0.72 3.63E-05 

   1 1 5 2.86 0.75 1.00E-04 

         
Moderately common species        

Nectarivore Eastern Spinebill 0.76 3 1 3 -1.9218 0.7939 1.55E-02 

 (RE mosaic)  3 2 3 -2.5693 1.0507 1.45E-02 

   3 4 3 -2.9717 1.0526 4.80E-03 

Seeds on 
ground 

Sulphur-crested Cockatoo 
(RE mosaic) 0.76 2 4 2 -2.8104 1.3562 3.82E-02 

 Common Bronzewing 0.76 3 1 3 -2.6923 -2.236 2.53E-03 

 (RE mosaic)  3 2 3 -1.9034 -1.984 4.73E-02 

   3 4 3 -1.7981 -1.968 4.91E-02 

   3 5 3 -2.0919 -1.953 5.09E-02 

Damp ground 
Eastern Yellow Robin 
(RE mosaic) 0.76 3 1 3 -1.9706 0.8866 2.62E-02 
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Table 3-7 Common and moderately common species with lowest and highest abundance 
fire frequency classes and the statistical significance between classes. 

Generalized linear mixed models of species responses. Model selection based on random effect 
structure (RE) and ranked using Akaike’s Information Criteria (AICc).  Reference (Ref) is the fire 
frequency class used as the model reference; positive estimates indicate reference mean is the 
lowest.  Only variations between fire frequencies giving a 95% or greater confidence level are 
reported.   
Fire frequency categories: (1) unburnt or burnt over 34 years ago; (2) one burn within last 20 years, 
or, one fire within last 20 years plus one fire over 45 years ago;  (3) 2-4 fires recorded since 1939 and 
not breaching tolerable fire interval (TFI) of 10 years post prescribed burn or 15 years post bushfire; 
(4)  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI breached >22 years ago  (5) 2-3 
fires within the last 19 years with TFI breached within last 19 years.  Refer to Table 3.2 for scientific 
names.  
 
 

Common species                                                          Abundances per fire frequency class 

Foraging Guild Common name 
Akaike 
weight Ref 

TSF 
Low 

TSF 
High Estimate SE P 

Open Trees Scarlet Robin 0.95 5 2 5 -0.44 0.22 0.05 

 (RE mosaic/site)  5 3 5 -0.53 0.25 0.03 

     5 4 5 -0.50 0.25 0.04 

Carnivores Grey Currawong 0.98 5 1 5 0.10 0.001 2.00E-16 

 (RE mosaic/site)  5 2 5 -0.59 0.001 2.00E-16 

   5 3 5 -0.45 0.001 2.00E-16 

     5 4 5 -1.03 0.001 2.00E-16 

 Laughing Kookaburra 1.00 1 2 1 -1.30 0.46 5.00E-03 

 (RE mosaic/site)   1 5 1 -1.62 0.62 0.01 

Tall shrubs Brown Thornbill 0.50 1 1 3 0.58 0.29 0.04 

   (RE mosaic/site)   1 1 5 0.88 0.36 0.01 

         
Moderately Common Species               

Carnivores 
Pied Currawong 
(RE mosaic) 0.78 2 2 5 1.92 0.94 0.04 

Nectarivore Brown-headed Honeyeater 0.78 2 2 1 1.46 0.71 0.04 

   (RE mosaic)   2 2 3 1.59 0.70 0.02 

 
 

Carnivores 

This group comprised three common species: Laughing Kookaburra, Grey 

Shrike-thrush and Grey Currawong.  The moderately common species were the 

Pied Currawong and Australian Raven.   

All individual species’ models for this guild showed that abundances were lower 

in newly burnt vegetation (Appendix A3), reflecting the response of the carnivore 

group as a guild (Fig 3.6iv) and the avian community more generally (Fig 3.4).   
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The Laughing Kookaburra models show a lower abundance in new growth (2.5-

10 year old) vegetation (TSF3)  (Fig 3.9 i, iii, Table 3.6).  The lower abundance of 

Kookaburras in this age class is not representative of the carnivore foraging guild 

but does reflects its preference for open stands of vegetation, suitable for pounce 

feeders, as opposed to denser ground cover in the form of new growth 

vegetation, that may impede their sight for feeding.  Further to a preference for 

open stands of older vegetation, they showed a preference for unburnt sites over 

sites burnt at all (Fig 3.9 ii, iv, Table 3.7).  TSF and fire frequency are confounded 

(old sites are not frequently burnt) so it is impossible to tell if it is TSF or fire 

frequency, or both, that drives the observed trends in Laughing Kookaburras.  

The Laughing Kookaburra was unique in its response to TSF and fire frequency.  

No other carnivore showed any major abundance differences in vegetation older 

than six months (Appendix A3).  The only other fire frequency response for birds 

of this guild that were modelled, was that of the Pied Currawong, where modelling 

suggests a significant increase on sites frequently burnt (Table 3.7). 

Of interest is the possible relationship between the Laughing Kookaburra and the 

Grey Currawong.  The results for these two species were more closely examined.  

Results are presented for both these species as abundance data (Fig 3.9 and 

3.10 i and ii), and further, as presence/absence data (Fig 3.9 and 3.10 iii and iv), 

to remove the significance of one site where kookaburras were observed in 

greater abundance.  The binomial graph for the kookaburra shows it to be almost 

absent on sites of both newly burnt (TSF1) and new growth (TSF3) vegetation 

(Fig 3.9 iii).  The confidence intervals on this graph span from 0-1, reflecting a 

near complete presence or absence on every site within the particular age class.  
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The abundance graph suggests a reduction, but still a presence in newly burnt 

and new growth (Fig 3.9 i).  Indeed, examination of raw data reveals a drop in 

occurrence in the new growth vegetation.  Of the total number of sites Laughing 

Kookaburras were observed, 12% of presence observations were in newly burnt 

vegetation, 16% were in new growth, while the remaining 3 classes each had 

24% of presence observations.  In contrast, the Grey Currawong abundance and 

occurrence across age classes older than six months, varies little (Fig 3.10 i, iii).  

For the kookaburra, both the binomial and the abundance graph show a 

preference by the species for unburnt vegetation (Fig 3.9 ii, iv).  The Grey 

Currawong exhibited no fire frequency preferences (Fig 3.10 ii, iv). 

A further comparison was made by reviewing changes in presence observations 

for these two species, together and independent of one another, across the 

vegetation age classes (Table 3.8).  

Table 3-8 Comparison of Laughing Kookaburra and Grey Currawong presence data, 
together as species and independent of one another. 
 
Comparison of presence data with presences for each species split per vegetation age classes when 
observed individually and together, as a percent. 
 

Vegetation age class Species alone  Species together Vegetation feature 

 Laughing Kookaburra Grey Currawong    

TSF1 (0-6 mths) 10 8 29 ground bare 

TSF2 (6 mths-2.5 yrs) 21 25 21 ground bare 

TSF3 (2.5-10 yrs) 18 29 4 dense new growth 

TSF4 (10-35 yrs) 29 20 25 open vegetation 

TSF5 (35+ yrs) 23 18 21 open vegetation 

 

The results from the review of presence data for the two species highlight a 

decrease in the presence of Laughing Kookaburras in new growth vegetation, 

when not with Grey Currawongs.  For Grey Currawongs, the new growth 
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vegetation may be their preferred age class.  However, the occurrence of both 

species together in this vegetation, was rare (Table 3.8).  

(i)      (ii) 

  
(iii)      (iv) 

 

  

Figure 3.9 Laughing Kookaburra responses to TSF and fire frequency.   

Modelling run as a Poisson distribution (i, ii)  and then as Binomial presence/absence (iii, iv).  

Generalized linear mixed models.  Model selection based on random effect structure (site within mosaic) and 
ranked using Akaike’s Information Criteria (AICc).  TSF categories: tsf1 0-6 months, tsf2 6 months – 2.5 
years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ years, combined with last burn not recorded.  

Frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 one burn within last 20 years, or, one 
fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 fires recorded since 1939 and not 
breaching tolerable fire interval (TFI) of 10 years post prescribed burn or 15 years post bushfire; 
ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI breached >22 years ago  ff5 2-
3 fires within the last 19 years with TFI breached within last 19 years. 
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Figure 3.10 Grey Currawong responses to TSF and fire frequency.  Modelling run as a 
Poisson distribution and then as Binomial presence/absence.  

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic) and ranked using Akaike’s Information Criteria (AICc).  TSF categories: tsf1 0-6 months, 
tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ years, combined 

with last burn not recorded.  Frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 

one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 
fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed 

burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI 

breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 
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Canopy-foraging insectivores 

The group of canopy feeders comprised three common species:  Grey Fantail, 

Spotted Pardalote and Striated Thornbill.  The moderately common species were 

the Striated Pardalote and Rufous Whistler.   

The Grey Fantail graphs present outputs that broadly reflect the responses of the 

individual species modelled for this guild (Fig 3.11, Appendix A3).  Grey Fantails 

showed a significant increase in abundance in regrowth and new growth 

vegetation (TSF2, 3).  This result aligns with the Grey Fantail response in the fire 

frequency model.  Even-though results were not significant, the graph highlights  

an increase in abundance on sites frequently burnt (TFI’s broken), (Fig 3.11, 

Table 3.7). 

 

Figure 3.11 Grey Fantail responses to TSF and fire frequency. 

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic) and ranked using Akaike’s Information Criteria (AICc).  TSF categories: tsf1 0-6 months, 
tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ years, combined 

with last burn not recorded.  Frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 

one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 
fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed 

burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI 

breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 
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Bark-foraging insectivores 

There were two species reviewed from the bark foraging guild: the White-throated 

Treecreeper and Varied Sittella.  White-throated Treecreeper numbers were 

lower in newly burnt vegetation and the Varied Sittella was absent (Appendix A3).  

While the modelling result was not significant, the graph for the Varied Sittella 

highlights an increase in occurrence in regrowth vegetation (Appendix 3A).  

In terms of fire frequency, there are no notable results for the White-throated 

Treecreeper.  However, the graph outputs for the Varied Sittella model show an 

increase in occurrence on sites that had been burnt more frequently than only 

once (Appendix 3A).  This reflects that Varied Sittellas are responding to fire 

through a greater abundance in frequently burnt sites, and that this may be on 

account of a greater abundance of their insect food source which may be 

stimulated by regrowth vegetation. 

Nectarivores 

The abundance of only one nectarivore, the White-eared Honeyeater, was 

influential in the assemblage patterns by being almost exclusively detected in 

new growth vegetation (TSF3), (Fig 3.12, Table 3.6).  This species was observed 

feeding on honeydew amongst the new growth and amongst tall shrubs.  There 

were five moderately common nectarivores in this study:  Brown-headed 

Honeyeater, White-naped Honeyeater, Yellow-faced Honeyeater, Red Wattlebird 

and Eastern Spinebill.  The Eastern Spinebill and Red Wattlebird both showed a 

similar response to the White-eared Honeyeater, in being more abundant in new 
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growth vegetation (Table 3.6, Appendix A3).  While no other nectarivore exhibited 

any significant responses across any TSF age classes, there was a further 

response besides an increase in abundance or occurrence in new growth.  

Graphs for both the White-naped and Yellow-faced Honeyeaters reveal a 

preference for older vegetation (TSF4), further supported by the graph of Brown-

headed Honeyeater showing a greater occurrence in vegetation older than 35 

years (Appendix A3). 

Modelling for fire frequency showed that no nectarivores responded significantly 

to the fire frequency classes.   

 

Figure 3.12 White-eared Honeyeater responses to TSF.   

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic for tsf and mosaic for ff) and ranked using Akaike’s Information Criteria (AICc).  TSF 
categories: tsf1 0-6 months, tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 

years, tsf5 35+ years, combined with last burn not recorded.  Frequency categories: ff1 unburnt or 
burnt over 34 years ago; ff2 one burn within last 20 years, or, one fire within last 20 years plus one 

fire over 45 years ago;  ff3 2-4 fires recorded since 1939 and not breaching tolerable fire interval 

(TFI) of 10 years post prescribed burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-

3 fires > 20 years ago with TFI breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI 
breached within last 19 years. 
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Damp ground foraging insectivores 

There were two moderately common species reviewed in this foraging guild:  the 

White-browed Scrubwren and the Eastern Yellow Robin.   

The models for both species show an increase in regrowth vegetation (TSF2), 

after a reduced presence in the six months post-fire vegetation for the Eastern 

Yellow Robin and absence in this age class for the White-browed Scrubwren 

(Appendix 3A). Both species showed a preference for new growth vegetation 

(TSF3) above all age classes, this being significant for the Eastern Yellow Robin 

(Table 3.6).  Neither species displayed a fire frequency response, although both 

frequency graphs do reveal the lowest occurrence for these species occurred on 

unburnt sites (Appendix 3A). 

Graphing the frequency data for both species did not result in any significant 

outputs.  However, both the Eastern Yellow Robin (Appendix A3) as well as the 

Damp ground guild (Appendix A2) showed them to be rare in sites unburnt or of 

only one burn, with an increase in occurrence across sites that both follow and 

breach the tolerable fire interval for Heathy Dry Forest vegetation.  This result 

demonstrates that the tolerable fire interval measure for plants is not an efficient 

measure for damp ground foragers. 
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Insectivores that feed from open ground among trees or shrubs, the 

‘Open Tree’ foraging guild 

This group comprised four influential species:  the Buff-rumped Thornbill, Scarlet 

Robin, Superb Fairy-wren and the White-winged Chough, as well as the 

moderately common species, the Pallid Cuckoo and Spotted Quail-thrush.   

The Scarlet Robin results broadly reflect that of the group, with a significantly 

lower occurrence in newly burnt vegetation, rapidly increasing in abundance, six 

months post burn (Fig 3.13 i, Appendix A3).  While the Superb Fairywren showed 

a preference for new growth vegetation (TSF3), (Appendix A3), the increase six 

months after fire was consistent across species, with no significant differences in 

the increased abundances and occurrences modelled.  However, the White-

winged Chough graph shows a significantly lower occurrence in new growth 

vegetation (Table 3.6, Appendix A3).   

The Scarlet Robin model for frequency showed a significant increase on sites 

burnt frequently with the tolerable fire intervals breached (Fig 3.13ii, Table 3.7).  

This result is supported in this guild by the graphed output for the Buff-rumped 

Thornbill (Appendix A3), the species observed in greatest abundance (Table 3.2).  

The fire frequency binomial graph of the Buff-rumped Thornbill shows a 

confidence interval spanning 0-1 which reflects a presence on nearly every site in 

this fire frequency category (Appendix A3).   
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Figure 3.13 Scarlet Robin responses to TSF and fire frequency. 

Generalized linear mixed models.  Model selection based on random effect structure (site within 
mosaic) and ranked using Akaike’s Information Criteria (AICc).  TSF categories: tsf1 0-6 months, 
tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ years, combined 

with last burn not recorded.  Frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 

one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 
fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed 

burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI 

breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 
 
 

Responses by species in this guild to time since fire, highlight the complexities 

associated with generalised assessments being made when reviewing guild 

responses.  Five of the six species reviewed were most frequently observed in 

new growth vegetation.  However, the White-winged Chough was observed less 

amongst new growth (Appendix A3).  

 

Open ground foragers 

There was one species reviewed in this foraging guild: the Australian Magpie.  

Whilst significantly more abundant in regrowth vegetation (Table 3.6), it did not 

respond significantly to fire frequency. 
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Seed-eaters feeding from ground or low vegetation 

There were two moderately common species in the guild that feed on seeds on 

the ground: Common Bronzewing and the Sulphur-crested Cockatoo.   

The Common Bronzewing displayed a distinct TSF response with a significantly 

higher abundance in new growth vegetation compared to all other age classes 

(Fig 3.14i, Table 3.6). Its greater abundance on sites with only one burn may be 

an artefact of the project design as many of the burn sites were of recent burns 

(Fig 3.14ii).  

 

Figure 3.14 Common Bronzewing responses to TSF and fire frequency. 

Generalized linear mixed models.  Model selection based on random effect structure (mosaic) and 
ranked using Akaike’s Information Criteria (AICc).  TSF categories: tsf1 0-6 months, tsf2 6 months – 

2.5 years, tsf3 2.5 years to 10 years, ff1 unburnt or burnt over 34 years ago; ff2 one burn within 

last 20 years, or, one fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 fires recorded 
since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed burn or 15 years 

post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI breached >22 

years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 
 

The Sulphur-crested Cockatoo was absent from newly burnt sites and results 

reveal a significant preference for young vegetation (TSF2) compared with the 
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older open stands of TSF4 (Table 3.6).  However, it did not appear to respond to 

fire frequency. 

Insectivores that forage from tall shrubs 

Two common species, the Brown Thornbill and Fan-tailed Cuckoo, and one 

moderately common species, the Golden Whistler, were reviewed in the tall shrub 

foraging guild.   

The Fan-tailed Cuckoo did not respond to either TSF or fire frequency.  The 

Golden Whistler numbers were too few to model for TSF.  However, due to a lack 

of presence on frequently burnt sites such that observations were restricted to 

four frequency categories, modelling for frequency was run for this species.  

However, results reveal little.  The Brown Thornbill responded to TSF with a 

significantly lower abundance in the newly burnt sites, in keeping with the 

community response (Fig 3.15i, Table 3.6).  Further, the Brown Thornbill 

responded to fire frequency with significantly higher numbers in sites with multiple 

burns (TFI’s unbroken) as well as in sites subject to multiple burns (TFI’s 

unbroken), compared to unburnt sites (Fig 3.15ii, Table 3.7).  The Brown Thornbill 

appears to be responding to fire frequency but is not responding to a TFI 

measure. 
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Figure 3.15 Brown Thornbill responses to TSF and fire frequency. 

Generalized linear mixed models.  Model selection based on random effect structure (mosaic for tsf 
and site within mosaic for ff) and ranked using Akaike’s Information Criteria (AICc).  TSF categories: 
tsf1 0-6 months, tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ 

years, combined with last burn not recorded.  Frequency categories: ff1 unburnt or burnt over 34 
years ago; ff2 one burn within last 20 years, or, one fire within last 20 years plus one fire over 45 

years ago;  ff3 2-4 fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 

years post prescribed burn or 15 years post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 

years ago with TFI breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI breached 
within last 19 years. 
 
   

The responses by birds foraging amongst tall shrubs are similar to responses by 

those foraging on damp ground, in that both guilds support the notion that the 

measure of tolerable fire interval is not useful for predicting fire frequency 

responses by birds. 

Seeds-eaters that forage at all levels including trees 

There was one species representing the foragers of seeds in trees, the Crimson 

Rosella.  It did not exhibit a fire frequency response however it did reflect two 

distinct responses to TSF:  a significantly higher abundance in both regrowth 

(TSF2) and long unburnt vegetation (TSF5) (Table 3.6, 3.7). 
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3.3 Discussion 

Fire regimes in the forests of south-eastern Australia are changing relative to 

regimes in recent decades, not only with an alteration in fire interval patterns (Gill, 

1975), a result of a changing climate (Cary et al., 2012), but also with the 

increase in the frequency of both bushfires and prescribed burns (Pitman et al., 

2007, Fairman et al., 2016, Steffen et al, 2017).  This may place some avifaunal 

communities in a vulnerable position; with fire regimes becoming more complex 

(Driscoll et al., 2010, Bradstock, 2012).  In an era where Government protocol is 

to manage the landscape for asset protection by burning (Department of 

Sustainability and Environment, 2012), we need to be clear on what impacts, if 

any, this vegetation management process (combined with bushfire events) has 

on forest birds (Driscoll et al., 2010).  Limitations exist on funding that often 

impact on the continuation of monitoring programs, and species’ responses may 

lag fires, and so trends may not be fully recognized under short term research 

programs (Clarke, 2008).  As such, determining responses with a space-for-time 

approach is useful in providing information on bird responses in successional 

post-fire vegetation stages.  

3.3.1 What are the bird responses to the most recent fire? 

This research used Cheal’s (2010) measure of vegetation age classes (time since 

fire) as the basis for examining bird abundance trends in Heathy Dry Forests.  As 

birds are responding to the vegetation structure (Loyn, 2012), the older classes of 

Cheal’s classification were grouped into one, such that any sites investigated that 

were over 35 years in age were all grouped together.  Differences in eucalypt 

Heathy Dry Forest older than 35 years are difficult to distinguish by all but a 
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skilled botanist, and the structural components required by birds change little in 

areas older than 35 years.  The time since fire categories used were logical in 

terms of observed vegetation changes in each class, reflecting differences in 

vegetation structure to which the birds would have been responding.  Indeed, 

highlighted in the modelling comparison between the use of continuous age 

versus categorical age data, the time since fire categories revealed information 

that may have been masked in modelling with a continuous classification that did 

not pick up six-month increments, over 70 plus years.  

The first prediction for this research was that early post-fire vegetation in Heathy 

Dry Forest is characterised by distinct structural elements in the vegetation and, 

as such, will support distinct bird assemblages.  In Heathy Dry Forests there was 

limited evidence of this occurring.  In the first six months, abundances of all 

species dropped, but no individual species or group was specific to this age class 

only.  Over time, abundances increased, with the ordinations illustrating that 

changes over time were not different assemblages but rather, changes in species 

abundances of very similar assemblages.   

There was one exception to the notion that species abundances increased rapidly 

post-fire, evident with nectarivores.  They showed a distinct preference for the 

densest, new growth vegetation in the 2.5 to 10-year-old vegetation stands.  

These birds were near absent in all but new growth vegetation; increases in 

abundances largely attributable to the numbers of White-eared Honeyeaters.  

Whilst sites of the new growth age class were not clustered (sites with new 

growth vegetation were monitored across the project region), the project design 

did have more 2.5 to 10-year-old sites than other age classes.   
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On site, vegetation differences were evident between the two regrowth age 

classes (TSF2, TSF3), hence the decision was made to maintain the class 

distinction.  The younger regrowth stands (6 months to 2.5 years) had eucalypts 

with thick and quite short epicormic growth covering entire blackened tree trunks.  

On these sites, ground cover was apparent but minimal.  The older regrowth and 

new growth (2.5 to 10 years) had re-sprouting grasses and dense shrub-like 

vegetation covering the entire ground.  The younger regrowth vegetation had an 

abundance of birds feeding within the epicormic growth, however the older 

regrowth and new growth had birds feeding within canopy and ground levels.  

The distinction between these two vegetation age classes proved important as 

the Laughing Kookaburra was abundant amongst regrowth vegetation, but absent 

from the denser new growth age class. 

The increase in bird abundances in the regrowth vegetation leads to two points of 

discussion.  Firstly, ‘mega-fires’ across Victoria are occurring more frequently.  In 

recent times, major areas of the landscape have been burnt by bushfire twice 

inside 11 years (Fairman et al., 2016).  Whilst research into three bushfires in 

Spain has already highlighted that not all vegetation species survive fire in all 

situations (Rodrigo et al., 2004), Fairman et al. (2016) argue that what is 

unknown and of concern is how the increase in bushfire frequency will impact the 

fire sensitive (obligate seeders) and the fire tolerant (re-sprouting) trees in the 

landscape.  Rodrigo et al. (2004) highlighted that re-sprouters displayed the 

greatest resilience to frequent fire.  However, they contrasted these results with 

predictions for plants with few seeds, potentially failing to regenerate, as fire 

frequency increases.  Further research has highlighted that plants take several 
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years to establish pre-fire seed stocks, therefore subsequent fires occurring in the 

juvenile stages of obligate-seeders can threaten species (Bowman et al., 2014). 

Just as Victoria’s Heathy Dry Forest has a tolerable fire interval requirement of 15 

years post bushfire, it was highlighted by Rodrigo et al., (2004) that, with species 

in their models, fire intervals of less than 10 to 15 years may lead to the 

disappearance or reduction of plant species.  As the climate in south-east 

Australia is drying, further investigations into the tolerable limits of fire tolerant 

vegetation species are required.  What is already known is that these fire tolerant 

species have temperature tolerances that will likely result in site-location shifts as 

temperatures increase and rainfall decreases (Mok et al., 2012, Enright et al., 

2015).  The drying landscape and the increase in the frequency of large scale 

fires, both potentially impacting the persistence of fire tolerant vegetation species, 

may have important consequences for the forest birds.   In Heathy Dry Forest, the 

abundance of birds was highest in re-sprouting trees.  The birds observed may 

have been responding to the re-sprouting epicormic growth of the eucalypts for 

both insects as their food resource and predator protection.  A threat to this 

vegetation is a direct threat to bird biodiversity in the region. 

A second important consideration is that of the timing of prescribed burns.  It has 

been determined that the most critical period for development of young birds is 

whilst they are being fed in the nest (Lack, 1950).  Furthermore, research 

describes that temperate region species breed in spring (James and Shugart, 

1974), as this is the season that yields the greatest volume of food (Lack, 1950).  

Until recent times, prescribed burns were carried out across Victorian forests in 

autumn and through winter months.  In fact, this research used sites burnt in the 
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prescribed burn process in autumn months only.  Now however, prescribed 

burning is practised all year.  Dangerous fire weather can occur in any month 

today, and so, in attempts to meet prescribed burning targets, burns occur when 

opportunity arises, irrespective of season.  A further point is that autumn 

prescribed burns are more intense and severe than spring burns, due to 

vegetation having dried extensively in the summer months (Tolhurst and Cheney, 

1999).  However, while spring prescribed burns, occurring after winter rains, 

might be considered safer to manage, they are also considered more 

unpredictable (Tolhurst and Cheney, 1999).  While fuel moisture may be high, 

changes to weather patterns in Victoria in the spring months can result in rain 

events ceasing and fires burning for some time (Tolhurst and Cheney, 1999). 

More recently, down the east coast of Australia, in the south-west Australian 

regions and even in Queensland, bushfires are occurring in spring months. This 

change in the timing of prescribed burns and bushfires may have major 

implications for avifauna by reducing food availability and killing nestlings during 

the breeding season.  

If the declining trend in avian biodiversity in this region is to be arrested, research 

needs to continue into the identification of species’ responses to a changing fire 

regime.  An adaptive management approach is required, to continually update 

bird abundance trends, if management decisions are to be in the best interest of 

avian biodiversity.  Penman et al. (2011) highlighted the need for including more 

extensive ecological values into prescribed burning programmes.  Further to this, 

Kelly et al. (2017), by combining different factors of the fire regime and creating 

species distribution models, highlight that many studies review individual fire 
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events, but that it is now imperative that there is a shift to studies that incorporate 

data across multiple fires into modelling.  In Victoria, the State Government 

operates on a premise of burning for biodiversity (Department of Sustainability 

and Environment, 2012).  However, what is clear in this research is that, whilst 

many species increased in abundance in the post-fire regrowth and new growth 

vegetation, the Laughing Kookaburra was found to decline in abundance and 

occurrence due to this denser vegetation.  A ‘pyrodiversity begets biodiversity’ 

premise (Taylor et al., 2012) will not benefit the Laughing Kookaburra if the 

ground cover is dense with new growth and it cannot detect prey.  Understanding 

and managing for all species’ requirements is an imperative, if the declining trend 

in avian biodiversity is to be reversed.  Recognising that broad community or 

guild responses may not highlight the responses of all individual species is 

fundamental to ensuring, and managing for, the survival of all bird species. 

3.3.2 Can we describe foraging guild responses to fire, in broad terms, for each 
guild? 

Even though species may exploit the same environmental resources in a similar 

way to others within guilds (Root, 1967), as this study and others have 

demonstrated (Thiollay, 1992, Lindenmayer et al., 2000), not all members of a 

guild may respond similarly to disturbance.  It may not be possible to predict 

responses between closely related species (Lindenmayer et al., 1999, 

Lindenmayer et al., 2000) and factors that influence population density may vary 

between closely related species.  Koch et al. (2011) suggested that foraging guild 

responses are better predictors of environmental change than species’ 

commonness, therefore this research combined responses by guilds, with 

responses by individual common species.   
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Some foraging guilds can be described in broad response terms for all the 

species examined within that guild.  For example, the nectarivores and the 

canopy foragers were all most abundant in the denser regrowth age classes.  

However, general descriptors to describe a foraging guild are not always possible 

and complexities within guilds were highlighted.   

Responses by species within the carnivore foraging guild highlight the difference 

in responses by species within guilds.  The Laughing Kookaburra was greatly 

reduced in abundance in dense new growth vegetation, whereas the Grey 

Currawong showed a preference for this vegetation type.  While the notion that 

‘competitive exclusion’ may be a factor impacting Laughing Kookaburra 

abundance, these two species have been found to coexist (Recher and Davis, 

1998).  Indeed, results in this research highlight that not only do these species 

co-exist in Heathy Dry Forests, but they drop in occurrence together, when the 

vegetation is at its densest, during the 2.5 – 10 year age class.  The Laughing 

Kookaburra and Grey Currawong forage for prey from different levels in the 

vegetation.  The Laughing Kookaburra is a pounce predator and it is possible that 

the ground to mid-level regrowth may have been impacting prey visibility, 

whereas the Grey Currawong was mostly seen feeding while walking across 

damp ground.  However, the Grey Currawong has also been found to forage at 

height (Recher, 2016), therefore this versatility in sourcing prey from different 

levels in the vegetation (i.e. more generalist) may mean that the Grey Currawong 

may have a competitive advantage.  An added factor impacting kookaburra 

abundance in dense vegetation is that new growth ground cover may not be 

suitable for a broad range of reptiles; open canopy environments being essential 
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for ectothermic animals for basking (Michael et al., 2011).  As lizards are a major 

component of a Laughing Kookaburra’s diet, not only does the denser ground 

cover potentially impede vision of prey, but a component of the kookaburra’s diet 

may be entirely absent from the area, and what is left must be competed for with 

the Grey Currawongs.  

Another foraging guild displaying a complex set of responses was the 

insectivores that feed on the open ground.  The Buff-rumped Thornbill, Scarlet 

Robin and Superb Fairy-wren all displayed an aversion to newly burnt vegetation 

with no clear response differences across other vegetation age classes. The 

White-winged Chough on the other hand, avoided dense new growth.  As an 

open-ground forager the White-winged Chough would have difficulty feeding in 

closed, low vegetation and preferred a more open landscape.  However, in the 

same guild the Spotted Quail-thrush and the Pallid Cuckoo preferred denser new 

growth.  This is an important distinction, as the Spotted Quail-thrush is noted as 

being in decline (Barrett et al., 2003), and listed as endangered in some regions.  

To maintain species biodiversity, the responses of those species noted as being 

in decline need to be clearly understood and considered in concert with common 

species responses.   

3.3.3 Do we see distinctly different bird assemblages in the vegetation of 
different post-fire age classes?  

In this research, there was evidence confirming the second prediction, that there 

would be distinct individual species’ responses to time since fire. Vegetation 

affords birds with nesting sites, protection and food.  Therefore, each 

successional stage in post-burn vegetation will vary in which of these crucial 
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components is available.  If we consider a hot fire within a Heathy Dry Forest 

(one that was not patchy and removed the entire ground cover, tree bark and 

canopy levels) then the successional stages post-fire could be expected to have 

distinct differences, as seen by the birds.  

  

 

Figure 3.16 Diagrammatic Heathy Dry Forest vegetation successional stages post fire. 



 

 

3-144 

 

Fire will trigger immediate assemblage variations as birds respond to the changes 

in resource availability (Reis et al., 2016).  From the diagrammatic representation 

of the post-fire successional stages in Heathy Dry Forest (Fig 3.17), and the bird 

abundances recorded within each of these age classes, it is possible birds were 

responding to changes in the canopy density, presence (or absence) of 

decorticating bark, leaf and dead wood litter, and the ‘openness’ of the 

vegetation.   

In Heathy Dry Forest the newly burnt vegetation, with canopy, bark and ground 

cover all removed, was missing the open-tree feeders such as the Buff-rumped 

Thornbills, Scarlet Robins and Superb Fairy-wrens.  These sites did not have any 

nectarivores.  The White-throated Treecreeper, as a bark forager, was low in 

abundance and the Brown Thornbill, as a tall shrub forager, was also absent.  Six 

months later, and the epicormic growth was extensive.  The Crimson Rosella was 

abundant, as it fed on seeds in the trees, as were the canopy feeders such as the 

Grey Fantail and Spotted Pardalote.  Along with them, the Sulphur-crested 

Cockatoo fed on the ample seeds on the ground.  Three to ten years post fire and 

regrowth had moved through to its maximum phase.  Branches from the short 

epicormic growth, shrubs and bracken were all dense.  There was little to no bare 

ground.  The nectarivores, such as the White-eared Honeyeater and the Eastern 

Spinebill, were at their greatest abundances, the Common Bronzewing fed on 

seeds on the ground, and the Eastern Yellow Robin numbers were high as they 

fed on damp ground.  The White-winged Chough and the Laughing Kookaburra 

were scarce, these species preferred an open feeding ground.  By the time this 

vegetation was 35 years old the trees had all grown to their tallest, the 
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decorticating bark was extensive and the vegetation was open, with limited 

shrubs.  The Crimson Rosella dominated bird numbers, feeding on the seeds in 

the trees and carnivores, such as the Laughing Kookaburra and Grey Currawong, 

were once again obvious in the landscape. 

As a community, there were distinct differences with assemblage patterns in each 

vegetation age class.  The most striking were the community patterns 

immediately post-fire and again with the dense regrowth vegetation.  Immediate 

post-fire vegetation supported an assemblage with lower abundances across all 

foraging guilds.  On sites that had been extensively burnt (100% severity), it 

appeared that maybe birds had little protection, limited nesting sites and a paucity 

of food resources when bark, canopy and ground cover were all removed.  Fire 

disturbance has been shown to affect the short-term response of insects (Elia et 

al., 2011).  In the regrowth vegetation on the other hand, the abundances 

increased for all those species, such as the nectarivores, that thrived on and 

within dense flowering vegetation.  The age class with the densest post-fire 

vegetation supported nearly all the nectarivores recorded.  The greatest 

similarities between assemblages were observed in the older vegetation classes; 

which supported all those foraging guilds preferring open vegetation stands, fuller 

canopies and decorticating bark, along with complete ground cover of rotting 

logs, bracken and leaf litter. 

Other studies, for example those in mixed-conifer forests, indicate that vegetation 

stands post fire are suitable for specific foraging guilds and fire specialist species 

(Hutto, 1995, Nappi and Drapeau, 2009) and will therefore result in a temporary 

increase in abundance of early stage species, along with those species that 
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appear on burn sites only (Smucker et al., 2005).  The bird communities in these 

conifer forests, immediately post fire, are recognised to differ greatly in 

composition to later vegetation successional stage bird communities.  The Heathy 

Dry Forest results are not this distinct.  Whilst displaying a unique assemblage 

immediately post fire, there were no species or foraging guild abundance 

increases in newly burnt vegetation and there were no species unique to a burnt 

environment.  The abundances of all species decreased in recently burned 

vegetation. 

Unique assemblage patterns have been shown to exist in mixed-species eucalypt 

forests in Victoria, in age classes other than newly burnt.  Other studies have 

shown that dense regrowth, approximately 3 to 10 years after logging or fire, will 

support high densities of birds that favour shrub layers, including a suite of 

nectarivores dominated by White-eared Honeyeaters, whereas mature stands 

support a different suite of nectarivores (Loyn, 1980, Loyn, 1985, Muir et al., 

2015, Leonard et al., 2016, Kelly et al., 2017).  

3.3.4 How quickly are species abundances bouncing back post fire? 

Community and individual species’ responses, immediately post fire, were clear; 

abundances dropped within the first six months post burn.  However, low 

abundances postburn were usually followed with high abundances in regrowth 

and then new growth vegetation.   

In Heathy Dry Forest, vegetation recovery is swift.  After six months, the 

epicormic regrowth on trunks was dense, serotinous seedlings had sprouted, and 

grasses and brackens were regenerating.  For the ten years following fire, in 
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Heathy Dry Forest, the regrowth and subsequent new growth is at its densest.  Of 

those species that had low abundances in the newly burnt vegetation, many had 

corresponding high abundances in the regrowth and new growth age classes.  

This is illustrated in the species from different foraging guilds feeding at different 

levels within the vegetation, for example, the Spotted Pardalote as a canopy 

feeder, the Scarlet Robin and Superb Fairy-wren as those feeding on open 

ground among trees and shrubs, and the White-throated Treecreeper as a bark 

forager.  The Spotted Pardalote was likely responding to an increase in the 

abundance of psyllid insects within developing epicormic growth (Loyn and 

McNabb, 2015).  With a home range of approximately ten hectares (Debus, 

2006), Scarlet Robins are sedentary and select nest sites in specific Eucalyptus 

species (Robinson, 1990).  As such, it could be expected that they are vulnerable 

to fire, as fire would render trees unsuitable for nesting.  What is possible in these 

results is that they may have been responding to resource availability in the 

young regrowth vegetation.  The Superb Fairy-wren prefers low shrubs and tall 

herbs interspersed with bare ground (Emison et al., 1987), both features of 

regrowth and new growth vegetation.  While these results showed significant 

abundances in dense new growth, aged 2.5 to 10 years, their abundance in the 

younger regrowth of 6 months to 2.5 years was not significant.  This was partly in 

keeping with other studies that showed they avoid dense regrowth after bushfire 

(Loyn, 1997).  Superb Fairy-wrens are known to tolerate urban settings 

(Harrisson et al., 2013) and their persistence throughout landscapes altered by 

humans indicates a resilience to landscape changes and an inherent ability to 

exploit changing conditions (Trollope et al., 2009).  However, as they are 

territorial, sedentary and weak fliers, Superb Fairy-wrens may be reluctant to 
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move to nearby locations (Harrisson et al., 2013) and so are likely vulnerable to 

fire.  As Superb Fairy-wrens are currently in decline across north-central Victoria, 

despite their resilience across landscape types (Harrisson et al., 2013), further 

monitoring of their population trends is necessary to ensure population declines 

are detected and managed.  The White-throated Treecreeper’s response broadly 

aligns with results stating that they feed mainly from rough-barked eucalypts and 

that they have an aversion for smooth bark trees (Loyn et al., 2007), therefore 

they might be expected to avoid bark-scorched vegetation. Following this, for 

their abundance to be greater in young regrowth vegetation suggests they were 

responding to epicormic regrowth providing an abundant supply of invertebrate 

food (Loyn et al., 2007).  The response by the White-throated Treecreeper is 

consistent with previous results where they were found to prefer rough-barked 

trees from which they gleaned insects (Noske, 1985).  

As birds have been shown to display strong site fidelity, a rapid regrowth 

response by forest vegetation is a crucial factor for bird abundances to recover 

rapidly (Lindenmayer et al., 2014).  

3.3.5 Are birds responding to fire frequency? 

The third prediction in this research was that there will be little evidence of 

changes to assemblages based on fire frequency.  This study confirmed this 

prediction, with little evidence for a community fire frequency response.   

There were a limited number of individual species’ responses to fire frequency.  

Two species that showed a preference for unburnt sites were the Laughing 

Kookaburra and the Australian Raven.  The canopy feeding Grey Fantail showed 
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a preference for sites burnt multiple times, corresponding with their high 

abundances on regrowth vegetation.  However, the abundances of most species 

in unburnt sites were similar to those in sites burnt multiple times.   

The response of one species, the tall-shrub foraging Brown Thornbill, challenged 

the utility of the tolerable fire interval measure, (as a vegetation measure), as a 

predictor of bird abundances.  This species was abundant on sites burnt multiple 

times – with both tolerable fire intervals breached, as well as in those sites where 

the interval was not breached.  Other studies have shown that the abundance of 

Brown Thornbills dropped in recently burnt sites (Loyn and McNabb, 2015), 

suggesting that a negative relationship with fire frequency may be likely.  

However, this result highlights that there is a distinction between the age of 

vegetation, as per a recent burn, and a location being burnt multiple times.  Whilst 

Brown Thornbills may not be abundant on newly burnt sites, if resources are 

available, they will persist in a location that has been burnt a number of times in 

recent decades. 

While studies have determined that an increase in fire frequency in some 

vegetation types may result in a simplification of the vegetation structure with a 

reduction in the understorey (Albanesi et al., 2012), the structure of the Heathy 

Dry Forest tends to become simplified through time, naturally. As the vegetation 

matures, the structure of the understorey greatly reduces.  By 35 years, the 

Heathy Dry Forest has a vertical profile that has simplified to one consisting 

largely of ground cover, bark and a canopy.  The very nature of this vegetation 

type may therefore be cause for concern.  Research in woodlands has found that 

habitats of low complexity supported a reduced abundance in species that are 
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common in the Heathy Dry Forests:  the Buff-rumped Thornbill, Spotted 

Pardalote, Grey Shrike-thrush, Scarlet Robin and White-winged Chough (Watson 

et al., 2003). 

Other research into fire frequency within different vegetation types has also 

yielded a similar result, of little response by birds.  Repeated burning in tropical 

forests of Kalimantan did not lead to an impoverishment of avifauna; species 

richness stayed the same, although abundances dropped (Slik and Balen, 2005).  

Similarly, repeated fire in Oregon, USA, did not reduce bird species richness in 

the mixed evergreen forests (Fontaine et al., 2009).   

3.3.6  Fire frequency as a categorical classification – was this method a useful 
measure? 

Fire frequency was measured, in this project, in terms of the number of times the 

site had been burnt over time. This was further segregated based on Cheal’s 

(2010) ‘tolerable fire intervals’ which stipulated that 15 years is required for 

Heathy Dry Forest to persist post bushfire and 10 years post prescribed burn.  

The intention in this study was to not only assess avian responses to burn 

frequency, but to also determine the appropriateness of the tolerable fire interval 

measure, being used as a guide for birds.  Species were not seen to be 

responding to the interval in that there were no discernible differences in 

abundances on sites with TFI broken versus TFI unbroken.  This was evident with 

the guilds of damp ground and tall shrub foragers both having significant 

increases in abundance on sites burnt – regardless of fire interval.  
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Responses by birds to the fire frequency measure used in this project were 

minimal.  There was one exception, with the Laughing Kookaburra showing a 

preference for unburnt sites.  However, as this project design meant that time 

since fire and fire frequency could not be modelled together due to the 

configuration of sites – it is not clear on modelling alone whether the Laughing 

Kookaburra’s reduced absence on frequently burnt sites and reduced absence on 

sites with dense regrowth vegetation was a response to the most recent fire, or 

the frequency of burning, or both.  A biologically-based judgement suggests that, 

at the very least, the response is to time since the last fire, in that dense regrowth 

obscures prey, or prey is greatly reduced.  Further, a fire event may render a nest 

hollow unusable.  Therefore, fire events may shape a kookaburra’s territory. 

Models for the Laughing Kookaburra were initially run on abundance data, 

highlighting significant results for both time since fire and fire frequency.  The 

outcome from the more conservative presence-absence data, with the impact of 

one site with higher abundance minimized, was the same.  Therefore, even 

though Kelly et al. (2017) highlight that bird responses can sometimes vary 

(importantly) with the use of abundance data versus presence-absence data, the 

Laughing Kookaburra responses are clear. This species shows are clear aversion 

to regrowth vegetation as well as burnt sites.   

The lack of Laughing Kookaburras on newly burnt sites was unexpected.  As a 

pounce predator, it could be expected that they would be present on the open 

sites for easy access to prey.  However, as many of the recently burnt sites were 

comprehensively burnt, with no ground cover, bark or canopy remaining, most 

prey may have perished. 
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This fire frequency research was designed in such a way as to answer specific 

questions.  As such, the outcomes need to be considered in line with the fire 

frequency classification used – an actual number of burns per site and a tolerable 

fire interval, creating classification divisions.  Research by others has shown that 

the changes to habitat structure from the most recent fire strongly influence 

faunal responses (Haslem et al., 2011).  Furthermore, that repeated fires, 

especially severe fires, may in fact be altering the vegetation species composition 

and structure (Fairman et al., 2016, Kelly et al., 2017).  A more informative 

method of analysing bird abundance data may be the use of inter-fire intervals 

(the mean of years between fires), modelled with vegetation data, to make 

judgements on changes to vegetation that may be impacting birds per se (Kelly et 

al., 2017).   

Kelly et al., (2017) found the species they examined, in Victorian foothills, to show 

resilience to the effects of fire regimes.  However, attention also needs to focus 

on the potential for changes to vegetation (Fairman et al., 2016) that may occur 

as the frequency of bushfires and prescribed burns increase.  Part of the 

judgement on bird impacts from fire lies not only with changes to fire frequency, 

but also with the severity of each fire event, as those fires most severe may 

substantially alter the structure of the vegetation. 

3.3.7 How effective are the common species from each foraging guild, in 
illustrating possible fire responses for the entire foraging guild they 
represent? 

The benefits gained from monitoring common species are broad-reaching, 

including explanations as simple as: answering questions related to the most 

apparent species will substantially explain the world around us (Gaston, 2008); to 
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those more complex, such as that common species can be used to reflect 

community changes (Koch et al., 2011).  Further, common species may be more 

responsive to anthropogenic activities and, therefore, drive community 

assemblage patterns (La Sorte and Boecklen, 2005).  Or conversely, common 

birds may be less responsive and more resistant as they can shift resource base.  

All these points add weight to the benefits of placing emphasis on researching 

their trends.   

The abundance responses of common bird species to fire in Heathy Dry Forest 

have been shown to largely represent that of their respective foraging guilds, 

based on time since fire and the frequency of fires.  Even those foraging guilds 

with varied individual species’ responses (such as that shown by the carnivores, 

where pounce feeders preferred open vegetation, and ground feeders increased 

in abundance in regrowth vegetation), had common birds whose responses 

largely reflected that of the guild.  The ongoing monitoring of common species’ 

abundances will, therefore, give an overview reflecting many of the species in a 

Heathy Dry Forest.   

It is recognised however, that a focus on common species does not necessarily 

capture the status of those species endangered, or those under direct threat of 

extinction.  In fact, uncommon species were not considered in this study.  

However, as monitoring continues, and the database for all taxa grows, trends for 

rarer species become clearer and management can be applied and modified 

accordingly.  While attention does need to be given to managing rare or 

threatened species when considering the processes behind a changing 

biodiversity (Atauri and de Lucio, 2001), much can be gained from a focus on the 



 

 

3-154 

 

common species (Gaston, 2008) as they provide insights into ecosystem 

processes. 

3.3.8 Common species trends as a database – an adaptive management 
approach   

In Australia, there is a need for management processes to incorporate, not just 

vegetation ecology, but to include targeted research incorporating faunal ecology 

(Haslem et al., 2011).  Further to this, there is an emerging emphasis on adaptive 

management (MacHunter et al., 2009, Cheal, 2010); an integrated approach 

combining ecology with fire management practises.  The basic tenet of an 

adaptive management process for prescribed burning is iterative; to monitor and 

then modify management accordingly.   

Common birds, with their ease of detection, are already used as indicators of 

environmental change (Drever et al., 2008, O'Connell et al., 2000, Järvinen and 

Väisänen, 1979).  Therefore, determining the population dynamics of common 

species may offer substantial information on their relationships with other birds 

and their environment (Gaston, 2008, Gregory et al., 2005).  It is necessary to be 

clear in focus and direction; that different species have different sensitivities, and 

hence value, in environmental assessment.  It is possible therefore, to take this 

current research further and direct some focus onto common forest birds that 

may be key indicator species with specific fire responses (Lindenmayer et al., 

2000).  In monitoring the trends of these species, an attempt is made to capture 

responses to environmental changes that might not be detected through 

ecological monitoring of other less abundant fauna or vegetation species.  

Investigation into the behavioural responses and resource needs of each of the 
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common forest species needs to be undertaken to determine their position and 

value as indicators in a forest fire management protocol.  Nonetheless, an 

adaptive management approach of continued monitoring to determine responses 

of the common birds will give valuable insight into ecosystem scale changes 

occurring around them. This is important, as it represents a readily accessible 

database that can be analysed, while collecting data on the less abundant, 

specialist or endangered species.  

Research discussion has noted the paucity of long-term data (Ford et al., 2001, 

Bennett and Watson, 2011).  However, in recent decades The Atlas of Australian 

Birds (Blakers et al., 1984) was created, which was subsequently followed with 

an update (Barrett et al., 2003).  Even though a lack of more long-term data is 

highlighted in literature (e.g. Bennett and Watson, 2011), there is scope for 

combining trends for common species with information that already exists, and 

grouping the common birds to landscape types, similar to that in the Pan-

European Monitoring Bird Scheme (PEMBS) in Europe.  The PEMBS (created by 

the European Bird Census Council) has taken bird data analysis a step further 

(than anything in Australia) by utilizing common bird abundances 

(http://www.ebcc.info/pecbm.html).  The PEMBS members monitor the 

abundance data of common birds, in groups of forest and farmland birds, and 

measure trends across Europe.  Key to this process are two points: the first, that 

birds are good indicators for biodiversity across all taxa, and second, that 

farmland species abundance trends can be directly aligned with changes in 

agricultural landscapes.  Based on these fundamental points, the PEMBS has 

created the European common bird index and identified indicator species.   
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This research highlighted that 17 species are the main contributors to 

assemblage patterns in Heathy Dry Forest.  A similar system to the PEMBS, 

making online data available, could be implemented in Australia.  This research 

can be duplicated to determine the common bird species across all landscapes in 

Australia.  Taking this even one step further, citizen science campaigns could be 

created to continually add to the data bank of common bird abundances. 

Recent research by Simmonds et al. (2017, personal communication) at The 

University of Queensland has taken a similar approach in that their research has 

a focus on capturing broad-scale bird trends across Australia.  In their current 

investigations, continental-scale spatial vegetation datasets have been created, 

and they have linked a database of Australian bird habitat associations to these 

spatial data.  They have therefore, been able to produce extirpation maps for 463 

terrestrial bird species.  From these maps Simmonds et al. have designed metrics 

of lost habitat for land birds, potentially an important tool for investigating species 

decline.    

So, while there is a constant effort to increase our understanding of our bird 

communities (Russell et al., 2009), in order to effectively manage them, a further 

tool in effective adaptive management is to predict the trends of our common 

forest birds, as they may act as surrogates for entire bird communities.  As 

common species may be resilient to disturbances such as fire (Koch et al., 2011), 

implementing an adaptive management approach is useful in that this process 

incorporates continued monitoring and resultant modifications to management 

decisions, with ongoing monitoring gradually building an understanding of the 

rarer species. 
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3.3.9 The Laughing Kookaburra as a fire indicator species at risk  

The Laughing Kookaburra is a sedentary species that maintains complex nuclear 

social groups of a monogamous breeding pair with up to six helpers (Legge and 

Cockburn, 2000).  The flock is territorial and the size of that territory depends on 

the flock size and their ability to defend space (Parry, 1973).  As the home range 

of territorial species is confined, this suggests that they may be vulnerable to the 

potential impacts from repeated burning of most or all of their territory.  While it 

has been shown that we may expect the impact of prescribed burns undertaken 

every three to ten years to have minimal impact on common birds (Loyn and 

McNabb, 2015), the effects on the Laughing Kookaburra may, in fact, be 

substantial. 

In this study, the Laughing Kookaburra was the only species that showed 

significant responses to both time since fire and fire frequency.  It was greatly 

reduced in abundance from newly burnt sites; simply explained by suggesting 

that the extreme fires had burnt any available prey.  The Laughing Kookaburra’s 

presence in the new growth and regrowth vegetation however, was a little more 

complex.  It was present in the younger 6 month – 2.5 year regrowth, but reduced 

in abundance in the denser 2.5 – 10-year-old regrowth and new growth.  This 

suggested that there was a threshold in vegetation density for the Laughing 

Kookaburra; in the denser new growth vegetation it could not detect prey.  

Further, the Laughing Kookaburra showed a significant increase in abundance in 

unburnt vegetation, as opposed to sites burnt at all, no matter what the 

frequency.  These responses have implications for prescribed burn management 
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for if forests frequently burn, resulting in a persistent new growth vegetation state, 

the Laughing Kookaburra may remain absent. 

In 2004 the Laughing Kookaburra was reported as being widespread (Legge, 

2004) and yet, in 2015, this species was noted to be currently in decline along the 

entire east coast of Australia (Birdlife Australia, 2015).  This observation, when 

seen in combination with these data and the present burning policy, raises 

concern for the fate of this iconic, common species.  The extent to which this 

observation applies widely needs to be substantiated while there remains an 

opportunity to intervene, before the population becomes critically low.  While the 

results in this thesis may be finding a risk to the Laughing Kookaburra 

populations in forest reserves, its mainstay may be rural and agricultural settings 

with vegetation open enough for basking prey and pouncing; but old enough to 

have ample tree hollows.   

3.3.10 Validating the Cheal (2010) classification system for predicting bird 
responses to fire 

Creating models using either continuous age data and then, modelling with Cheal 

classifications, highlighted the importance of considering the timescale being 

reviewed and the context of the enquiry.  While both methods result in graphs 

with similar response curves (Watson, et al., 2012), the categorical graphs show 

more detailed information in the first ten years post-fire.  This may be important 

when determining the timing of prescribed burns.  
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Plate 18  The White-throated Treecreeper, Corombates leucophaea, is 

impacted by high severity prescribed burns. 

 

Source:  Dean Ingwersen, Birdlife Australia  
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4 Forest bird responses to prescribed fire and 
varying prescribed burn severities 

4.1 Overview 

In recent decades ‘mega-fires’ in the Victorian landscape have increased in 

frequency (Fairman et al., 2016) and this trend is expected to continue (Pitman et 

al., 2007).  This has resulted in an increase in efforts to ameliorate bushfire 

impacts on both human life and assets (Teague, 2010).   While prescribed 

burning is used as a means of managing fire fuel loads across different 

landscapes (Brockett et al., 2001, Artman et al., 2005, Brudvig et al., 2007, 

Fernandes et al., 2013), in Victoria, prescribed burns are also applied to the 

landscape with the objectives of maintaining and improving the resilience of 

natural ecosystems (Department of Sustainability and Environment, 2012).  So, 

as efforts extend to minimise bushfire impacts as well as to promote ecological 

sustainability, so there will be an increase in the extent of the landscape burnt 

(Teague, 2010).   

For fire to be used effectively for conservation we need to be able to predict 

species responses.  But this is challenging, as species have spatially and 

temporally varying responses to fire (Bilney et al., 2011, Lindenmayer et al., 

2014, Nimmo et al., 2014, Kelly et al., 2017).  The challenge is that species 

respond to vegetation change, and the way fire affects vegetation depends on 

numerous factors (Monamy and Fox, 2000, Driscoll et al., 2012). 

Fire severity is an aspect of the fire regime that has a major influence on post-fire 

vegetation dynamics, and hence species’ responses (Smucker et al., 2005, 



 

 

4-161 

 

Kotliar et al., 2007, Fontaine and Kennedy, 2012, Lindenmayer et al., 2014).  

While the response of fauna to fire severity gradients has been studied in some 

Australian regions, many of the Victorian studies to date have been conducted on 

taller/wetter/denser forests (Lindenmayer et al., 2014, Robinson et al., 2014, Loyn 

and McNabb, 2015, Haslem et al., 2016).  There is a paucity of research on fire 

severity impacts on fauna in Heathy Dry Forests. 

Much of the surveying and subsequent modelling of bird responses to the 

impacts of fire – either bushfire or prescribed burns – occurs without prior 

knowledge of an impending fire.  Necessarily then, such research is usually only 

based on post-fire bird data.  The opportunity presented itself for a sub-project to 

be developed that incorporated BACI design principles to investigate in detail bird 

responses to specific prescribed burns.  A BACI design is beneficial as it enables 

an assessment of the possible impacts of the prescribed burns, independent of 

(i.e. while controlling for) other natural phenomena.   

A group of sites were burnt as part of a prescribed burn process, all within a 

fortnight (March, April 2012).  Even though field work for this research did not 

begin until June 2012, bird data had been collected on these sites in the 

spring/summer season of 2010 (refer Preface).  Furthermore, the severity of the 

burns ranged from moderate burns where much vegetation remained unburnt, to 

intense fires, where close to 100% of the vegetation was burnt.   

To investigate the impacts of prescribed burn severity on birds, alpha and beta 

diversity responses were analysed, as well as the occurrence of individual 
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species.  The sites were all in Heathy Dry Forest EVC’s across three locations of 

Central Victoria, Australia.   

Two general predictions were made regarding the responses of birds to 

prescribed burn severity.  First, any high severity prescribed burn could be 

expected to alter the structure of the vegetation, such as the ground cover and 

bark layers, as well as the canopy, reducing its density.  However, studies have 

shown that, due to the speed of recovery of vegetation post-fire in eucalypt 

forests and woodlands, few early successional avian species are detected 

(Lindenmayer et al., 2008, Loyn and McNabb, 2015, Sitters et al., 2014a, Sitters 

et al., 2015).  Therefore, it could be expected that after severe burns there would 

be a decrease in the species richness of birds, along with low individual species’ 

occurrence, followed by a rapid recovery.  This rapid vegetation response may 

influence the bird assemblages, so a second prediction was formulated, that 

there may be an increase in species turnover in the first year post-fire, 

representing a unique assemblage of birds responding to a burnt environment. 

4.2 Site Locations 

Thirty sites were selected as part of the study of impacts of prescribed burn 

severity on birds.  There were 14 burn sites and initially 16 control sites (refer 

Methods 3.1.4).  Control sites, unburnt sites near to the sites affected by a 

prescribed burn, were reduced to a total of 13 (refer Methods 2.1.4).  The position 

of the sites relative to the area of each of the 2012 prescribed burns near them 

are provided on maps (Fig 4.1). 
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In most cases the burn edges were at roads (Figure 4.1).  As a number of the 

project sites were selected to be a mimimum of 50 metres from road edges, this 

then placed some project sites within 100 metres of prescribed burn edges.  

 

Figure 4.1 Site locations in Victoria, Australia relative to prescribed burns of 2012.   

2012 prescribed burn areas illustrated with cross-hatch markings.  
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4.3 Results 

Fifty-one species were detected in the surveys conducted during three 

spring/summer breeding seasons (2010, 2012-13, 2013-14), across 27 sites - a 

total of 2825 birds counted.   

There were no distinct differences in either alpha or beta diversity between sites 

and further, there was little response to severity in any of the species modelled.  

The one exception was the response of the White-throated Treecreeper, which 

was less abundant in the second year after severe fires.   

4.3.1 Alpha and beta diversity responses to fire and the severity of prescribed 
burns 

Bird species richness and species turnover were not influenced by prescribed 

fire, or fire severity, at burnt sites (Fig 4.2(a) – (d), Tables 4.1, 4.2).  Whilst the data 

showed no response by species richness to fire severity, but a change in 

abundance over time, the species richness graph for fire illustrated how impacts 

in the first and second year post fire were on both control and burn sites. 

Therefore, it shows that the responses were not fire related (Fig 4.2 (a)). 

There was no evidence of a species turnover response to fire severity.  Birds 

showed a limited response to community assemblage patterns post fire and 

further, there were limited changes to their community assemblage with an 

increase in prescribed burn severity (Fig 4.2 (c-d)).  The large difference between 

marginal and conditional R² for both fire and severity indicated that any variations 

in turnover may be a result of small spatial scale geographical variations (Tables 

4.1, 4.2). 
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(a)                                                                                      (b)     

  

                                              (c)                                                                                      (d) 

   

Figure 4.2 Avian responses to fire and the severity of prescribed burns in terms of 
biodiversity measures of species richness and turnover. 

The community response of species richness (a,b) and species turnover (c,d) to prescribed fire and 
the fire severity at burnt sites.  All fire graphs have pairs of control sites (light grey) with burn sites 
(dark grey) for time periods before the autumn prescibed burn (before) followed by the first 
observation year (spring 1) and the second observation year (spring 2).  The species turnover graphs 
are a Simpson dissimilarity measure of species turnover between before and spring 1 compared with 
before and spring 2.  Predictions are from generalized linear mixed models and grey shading 
represents 95% confidence limits.  

 

 

                                                                                                                                   

 

 Species richness 

(a) Fire response: control/burnt 

(b) Severity response 

 

 

 Species turnover 

(c) Fire response: control/burnt 

(d) Severity response 
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4.3.2 Individual species’ responses to prescribed fire and the severity of 
prescribed burns 

The occurrence of nine of the ten species analysed was not influenced by 

prescribed fire, or fire severity at burnt sites. 

Species with a response to both prescribed fire and prescribed burn 

severity 

Models showing significant relationships were developed for one species:  the 

White-throated Treecreeper (Cormobates leucophaeus).  The Akaike weight of 

0.57 for the model of fire changes over time (selected from two candidate 

models) suggests that there is approximately equal evidence supporting either 

interactive or additive models.   Therefore, it is unclear if prescribed burning is 

having an influence on the occurrence of this species.  The fire response graph 

illustrates a decrease in occurrence on burn sites in the second year post-fire (Fig 

4.3 (a)).  Severity modelling outputs for this species gave a high Akaike weight for 

model selection (0.99) (Table 4.2).  The severity graph suggested a second year 

post-fire decrease in occurrence with high severity burns (Fig 4.3 (b)).   
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                         (a)                                                            (b)         

 

Figure 4.3 White-throated Treecreeper (Corombates leucophaea) responses to fire and the 
severity of prescribed burns.  

Fire graph (a) has pairs of control sites (light grey) with burn sites (dark grey) for time periods before 
the autumn prescibed burn (before) followed by the first observation year (spring 1) and the second 
observation year (spring 2).  Severity responses are modelled (b) with continuous data, showing raw 
data spread across the severity scale.  The fixed effect of time is llustrated with a baseline for before 
(dotted line) on the burnt sites with comparisons for the two years post fire: spring 1 (dot and dash) 
and spring 2 (long dash).  Predictions are from generalized linear mixed models and errors are 95% 
confidence limits.  
 
 
 

Species with a limited fire and prescribed burn severity response 

Models of occurrence for the remaining nine abundant species showed no 

detectible fire or severity responses by any of these species.  Top ranked models 

for five species excluded the factor of time; there were no variations in severity 

responses by those species changing over time (Buff-rumped Thornbill, Crimson 

Rosella, Grey Currawong, Spotted Pardalote and the Striated Thornbill, Figs 4.4 

(b), (d), (f), (h), (j)).  Further to this, any changes in occurrence for these five species 

in graphs modelling fire were reflected equally between both burn and control 

sites (Fig 4.4 (a), (c), (e), (g), (i)). 
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        (a)                                                                                     (b) 

    

       (c)                    (d)       

 

      (e)                                                                                       (f)       

 

 

 

Crimson Rosella 

Platycercus elegans 

Buff-rumped Thornbill 

Acanthiza reguloides 

Grey Currawong 

Strepera versicolor 
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    (g)                                                                               (h) 

       

                                             

                                             (i)                                                                                   (j) 

   

Figure 4.4 Species responses to fire and the severity of prescribed burns (excluding time). 

Fire graphs (a, c, e, g, i) have pairs of control sites (light grey) with burn sites (dark grey) for time 
periods before the autumn prescibed burn (before) followed by the first observation year (spring 1) 
and the second observation year (spring 2).  Severity responses are modelled (b, d, f, h, j) with 
continuous data, showing raw data spread across the severity scale.    Predictions are from 
generalized linear mixed models and errors are 95% confidence limits.  

 

The occurrence of the remaining four species (Grey Fantail, Grey Shrike-thrush, 

Rufous Whistler and Scarlet Robin) changed over time, but temporal changes 

were similar at burnt and unburnt sites (Fig 4.5 (a), (c), (d), (f)).  At burnt sites, fire 

Spotted Pardalote 

Pardalotus punctatus 

Striated Thornbill 

Acanthiza lineata 
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severity had no detectable effect on the occurrence of these species (Fig 4.5 (b), 

(d), (f), (h)).     

                                                   (a)                                                                       (b)                                               

                    

                                                    (c)                                                                       (d)                                                                                       

 

Grey Fantail 

Rhipidura albiscapa 

 Grey Shrike-thrush 

Colluricincla harmonica 
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        (e)                                                                                     (f)  

 

 

           (g)                                                                                     (h) 

   

Figure 4.5  Species responses to fire and the severity of prescribed burns (including time).  

Fire graphs (a, c, e, g) have pairs of control sites (light grey) with burn sites (dark grey) for time 
periods before the autumn prescibed burn (before) followed by the first observation year (spring 1) 
and the second observation year (spring 2).  Severity responses are modelled (b, d, f, h) with 
continuous data, showing raw data spread across the severity scale.  The fixed effect of time is 
llustrated with a baseline for before (dotted line) on the burnt sites with comparisons for the two years 
post fire: spring 1 (dot and dash) and spring 2 (long dash).  Predictions are from generalized linear 
mixed models and errors are 95% confidence limits.  
  

Rufous Whistler 

Pachycephala rufiventris 

Scarlet Robin 

Petroica boodang 
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Table 4-1 Avian responses to prescribed burns in terms of biodiversity measures of species richness and species turnover and the likelihood of 
occurrence of 10 species. 

Two stage model selection based on: the interaction of the random effects (RE) and the interaction of fixed effects of burnt sites with time. Models ranked using 
Akaike’s Information Criteria (AICc).  Top ranked models are reported as Akaike weights from two potential candidates, interactive or additive combinations.  Fixed 
effect of time is reported as two measures: first year post fire (a1) and second year post fire (a2) with parameter estimates and standard errors (SE), along with each 
statistical significance (P).  Positive estimates indicate an incease above the intercept mean.  The intercept is the reference level in the model.  In species models 
‘before’ data was run as the reference.  R²marginal and R²conditional give the model fit with R²(m) representing fixed effects and R²(c) representing fixed plus random 
effects.  Predictions are from generalized linear mixed models.  Outputs for turnover model gave a t-value rather than a p-value as the measure of the difference 
relative to the variation in the sample data. 
 

Response variable Model Time 
Akaike 
weight Estimates SE P R²(m) R²(c) 

species richness burnt + time (RE mosaic)  0.84 -0.04 0.06 0.48 0.17 0.27 

  a1  -0.41 0.07 2.72 e-08   

  a2  -0.14 0.07 0.05   
                  

species turnover burnt + time (RE site)  0.74 0.03 0.06 0.58 0.02 0.64 

  a1  0.04 0.03 1.32   

  a2  -0.04 0.03 -1.32   

         
Buff-rumped Thornbill burnt + time (RE mosaic)   0.89 -0.30 0.35 0.40 0.06 0.09 

Acanthiza reguloides  a1  -0.63 0.40 0.12   

  a2  0.41 0.43 0.34   

         
Crimson Rosella burnt + time (RE mosaic)   0.87 0.45 0.33 0.17 0.04 0.04 

Platycercus elegans  a1  -0.08 0.39 0.85   

  a2  0.62 0.42 0.14   

         
Grey Currawong burnt + time (RE mosaic)   0.88 -0.15 0.37 0.69 0.04 0.10 

Strepera versicolor  a1  -0.35 0.42 0.40   

  a2  0.59 0.42 0.16   
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Grey Fantail burnt + time (RE site)   0.82 0.42 0.51 0.41 0.07 0.24 

Rhipidura fuliginosa  a1  1.02 0.46 0.03   

  a2  0.99 0.48 0.04   

         
Grey Shrike-thrush burnt + time (RE mosaic)   0.88 0.04 0.38 0.91 0.06 0.16 

Colluricincla harmonica   a1  0.19 0.44 0.66   

  a2  1.10 0.44 0.01   

         
Rufous Whistler burnt + time (RE mosaic)   0.90 0.29 0.40 0.47 0.09 0.19 

Pachycephala rufiventris  a1  -1.07 0.48 0.03   

  a2  0.28 0.43 0.52   

         
Scarlet Robin burnt + time (RE site)   0.80 -0.33 0.37 0.37 0.04 0.09 

Petroica multicolor   a1  0.33 0.41 0.42   

  a2  0.84 0.42 0.05   

         
Spotted Pardalote burnt + time (RE mosaic)   0.59 0.57 0.33 0.09 0.08 0.08 

Pardalotus punctatus  a1  -1.00 0.40 0.01   

  a2  -0.84 0.41 0.04   

         
Striated Thornbill burnt + time (RE mosaic)   0.72 -0.11 0.39 0.78 0.09 0.13 

Acanthiza lineata   a1  -1.41 0.48 3.00E-03   

  a2  -0.85 0.50 0.09   

         
White-throated Treecreeper burnt x time (RE site)   0.57 0.15 0.55 0.78 0.18 0.18 

Cormobates leucophaeus   a1  0.64 0.89 0.47   

  a2  -1.60 1.01 0.11   
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Table 4-2 Avian responses to severity of prescribed burns in terms of biodiversity measures of species richness and species turnover and the likelihood 
of occurrence for 10 species. 

Two stage model selection based on: the interaction of the random effects (RE) and the interaction of fixed effects of burnt sites with time.  Models ranked using 
Akaike’s Information Criteria (AICc). Top ranked models are displayed with Akaike weights from three potential candidates:  interactive or additive combinations, or 
excluding time as a factor.  Fixed effect of time is reported as two measures:  first year post fire (a1) and second year post fire (a2) with parameter estimates and 
standard errors (SE), along with each statistical significance (P).  Positive estimates indicate an increase above the intercept mean.  The intercept is the reference level 
in the model.  In all cases ‘before’ data was run as the reference.  R²marginal and R²conditional give the model fit with R²(m) representing fixed effects and R²(c) 
representing fixed plus random effects. Predictions are from generalized linear mixed models.  Outputs for turnover model gave a t-value rather than a p-value as the 
measure of the difference relative to the variation in the sample data. 
 

Response variable Model Time 
Akaike 
weight Estimates SE P R²(m) R²(c) 

species richness severity + time  (RE site)  0.75 -0.01 0.02 0.45 0.12 0.28 

  a1  -0.35 0.24 3.80E-03   

  a2  -0.14 0.23 0.22   

         
species turnover                 

 severity (RE site)  0.69 -2.00E-03 0.01 -0.170 0.00 0.79 

         
Buff-rumped Thornbill                 

Acanthiza reguloides severity (RE mosaic)  0.69 -0.11 0.08 0.22 0.02 0.02 

         
Crimson Rosella                 

Platycercus elegans severity (RE mosaic)  0.63 0.05 0.11 0.63 0.01 0.06 

         
Grey Currawong                 

Strepera versicolor severity (RE mosaic)  0.53 0.01 0.15 0.92 0.00 0.08 

         
Grey Fantail severity + time (RE site)   0.62 -0.01 0.13 0.91 0.09 0.25 

Rhipidura fuliginosa  a1  1.49 0.65 0.02   

  a2  1.15 0.65 0.07   
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Grey Shrike-thrush severity + time (RE mosaic)   0.58 0.20 0.19 0.29 0.12 0.38 

Colluricincla harmonica   a1  0.00 0.63 1.00   

  a2  1.25 0.62 0.04   

         
Rufous Whistler severity + time (RE mosaic)   0.49 -0.13 0.11 0.25 0.11 0.14 

Pachycephala rufiventris RE mosaic a1  -0.98 0.65 0.13   

  a2  0.32 0.56 0.57   

         
Scarlet Robin severity + time (RE site)   0.53 -0.24 0.10 0.02 0.17 0.19 

Petroica multicolor   a1  0.89 0.61 0.15   

  a2  1.36 0.62 0.03   

         
Spotted Pardalote                 

Pardalotus punctatus severity (RE mosaic)  0.83 0.06 0.09 0.49 0.01 0.01 

         
Striated Thornbill                 

Acanthiza lineata  severity (RE mosaic)  0.59 -0.09 0.09 0.32 0.02 0.02 

         
White-throated Treecreeper severity  x time (RE site)   0.99 0.19 0.16 0.24 0.38 0.41 

Cormobates leucophaeus   a1  0.24 0.32 0.46   

  a2  -0.79 0.30 0.01   
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4.4 Discussion 

4.4.1 Can we see any changes to species richness after high severity prescribed 
burns? 

High severity prescribed burns had the effect of removing 100% of the ground 

cover, tree bark and canopy layers. It might be predicted therefore, that the 

dramatic structural changes would result in a short term drop in species richness. 

However, there was no evidence of this occurring.  Other studies have found that 

many species decline in abundance soon after severe bushfires e.g., in East 

Gippsland, Victoria (Loyn, 1997) and in the Victorian Central Highlands (Loyn and 

McNabb, 2015).  However, in this study, most of the subsequent drops in the 

occurrence of individual species modelled on severely burnt sites were reflected 

in both burn and unburnt control sites.  The result of little change in individual 

species occurrence extended across the community, with no clear evidence of a 

change to species richness.    

4.4.2 Is there a change to species turnover levels after a high severity 
prescribed burn? 

Given the widely recognised impact of fire on many birds, it was predicted that 

there would be an increase in species turnover immediately post-fire, with 

turnover returning to pre-burn levels by the second year.  Again, however, there 

was little evidence in this study of this occurring.  This result aligns with those 

from other south-east Australian studies that indicate a scarcity of early-

successional stage species in eucalypt forests and woodlands (Lindenmayer et 

al., 2008, Lindenmayer et al., 2014, Sitters et al., 2014a, Loyn and McNabb, 

2015, Sitters et al., 2015).  So, there may be a paucity of species that may enter 

the woodland soon after a fire to drive the expected increase in turnover.  
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The low species turnover in the Heathy Dry Forest may be also due to the rapid 

vegetation regrowth that has been noted to occur in the south-east Australian 

forests (Lindenmayer et al., 2008).  The sites in this project were burnt in autumn, 

and rapidly developed dense epicormic growth on the severely burnt sites by 

spring.  It was evident that this regrowth provided protection and food resources 

for birds.  Other studies have yielded similar results; where species abundances’ 

can be directly related to vegetation density (Monamy and Fox, 2000).  

In contrast to this outcome of low turnover are results from elsewhere that show 

distinct post-fire assemblages.  Fire in the mulga woodland in the central 

Australian arid zone results in a post-fire grassland vegetation, with a distinct bird 

community, dominated by granivores (Leavesley et al., 2010).  In the United 

States, the North American conifer-dominated forests also have a post-fire 

landscape with a distinct group of early successional stage bird species (Kotliar et 

al., 2007, Smucker et al., 2005).  This may be explained in that, whilst recovery is 

rapid in Heathy Dry Forest vegetation, the post-fire regrowth of conifer forests 

occurs at a much slower rate (Franklin et al., 2002).   

A further explanation for a lack of turnover with species may have been the 

closeness in proximity of burn sites to the edge of burns.  A number of the burn 

sites were within 100 metres of the burn edge, which, in many cases, was a 

narrow dirt road.  Furthermore, burn areas were relatively small and contained 

within the landscape.  Therefore, birds from monitored sites had little distance to 

fly to escape the fire and readily returned, to vegetation that had rapidly regrown. 
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A further aspect to consider in this research is the impact of edge effects on birds 

across this study area.  Considerable research has been applied to edge effects 

(Cadenasso et al., 2003a, Cadenasso et al., 2003b, Ries et al., 2004) and what is 

evident is that, although edge communities are complex, edge responses can be 

predictable and consistent (Ries et al., 2004).  Abrupt anthropogenic edges, such 

as those generated by severe prescribed burns, have been shown to result in a 

decline for some birds (Comfort et al., 2016).  Furthermore, bird responses at 

edges vary relative to vegetation density (McWethy et al., 2009).  So, as surveys 

may have been observing birds attracted to burn edges, associations with the 

nature of the burn need to be made with care.  This is particularly so given that 

three of the ten species individually assessed (White-throated Treecreeper, Grey 

Shrike-thrush and Grey Fantail) have been found to be more abundant in edge 

sites (Berry, 2001).   

A final aspect to consider is based on the process of selecting species to model, 

combined with site position.  Individual species modelled were selected based on 

their high abundance relative to others.  Furthermore, many of the sites were 

positioned next (within 100 m) to edges of roads and fire.  Therefore, inherent in 

this design, some of the interior species, which are typically specialists requiring 

larger woodland areas (Ambuel and Temple, 1983) and species more sensitive 

than generalist species (Canaday, 1996), were not considered in individual 

species’ assessments.   

4.4.3 The White-throated Treecreeper and its response to fire severity 

The one species unique in its response to fire severity was the White-throated 

Treecreeper.  Displaying site fidelity, the White-throated Treecreeper would have 
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remained in the area post fire.  This was also evident in the study of Loyn (1997), 

where the White-throated Treecreeper was also found to maintain abundance 

immediately post bushfires (Loyn, 1997).   

While the White-throated Treecreeper normally has a preference for feeding from 

rough-barked trees (Noske, 1985), in this project it would have found ample 

invertebrates in the rapidly growing and dense epicormic foliage, that was evident 

on the severely burnt sites in the first spring post-fire.  This was even after its 

preferred bark habitat was burnt in the high severity fires.  This interpretation 

aligns with another study that illustrated that the White-throated Treecreeper 

responded with a reduced abundance post bushfire, however it was to a much 

lesser extent than other species (Loyn and McNabb, 2015).  The response in the 

Heathy Dry Forest was different to that seen in other forests, for example, the 

Canadian boreal forests.  In these vegetation biomes, fire severity is crucial.  

Burned boreal forests are habitats for many deadwood-dependent species (Hutto, 

1995, Nappi and Drapeau, 2009), and so the severity of a fire determines the 

responses of the deadwood-associated insects and birds.  In these environments, 

in order to supply the post-fire specialist birds with food, deadwood-dependent 

invertebrate species must survive severe fires on unburnt snags or lightly burnt 

stands (Nappi et al., 2010).  In this project, the burns of high severity left little 

habitat other than blackened stumps and ash in the landscape for some weeks.  

However, the regrowth of the vegetation was rapid. 

In the Heathy Dry Forest, it was in the second year after fire, on sites of high 

severity burns, that the treecreeper’s occurrence declined greatly.  As the White-

throated Treecreeper is a sedentary bird that roosts and nests in tree hollows, its 
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requirement for a supply of hollows (Loyn et al., 2007) may not have been met. 

As such, its vulnerability to fire may be more a consequence of its needs for 

nesting, rather than for food.   

A further explanation of the treecreepers’ response to severe fires can be given, 

based on research with ground-dwelling mammals (Recher et al., 2009).  Recher 

et al., (2009) described how fire did not result in the extirpation of their model 

species however, abundances dropped in the years following the fire as drought 

conditions persisted (Recher et al., 2009).  Similarly, in this project, the second-

year decline by the treecreeper may have also been a response to a drying 

climate, rather than only a response to fire severity.  

4.4.4 A BACI design for testing prescribed burn severity illustrating an 
environmental impact other than fire 

No driver of change operates in isolation, and, as has been discussed, rainfall is 

a major factor in determining not only vegetation health but the drying of the 

landscape and the fuel available to fire.  A strong research approach designed to 

identify the influence of a single factor is to examine impact and control sites both 

before, and after, an impact.  The value of this BACI design is two-fold.  The 

approach provides an output for a pre-post fire comparison of bird abundance 

and occurrence.  Second, where a response is common to both control and 

impact sites, both before and after an impact, the influence of a further 

environmental factor may be revealed.  In this project, both burn and control sites 

were changed post-fire.  Broad community abundance, and the rates of 

occurrence of some individual species, decreased post-fire across all sites.  The 

occurrence of some species recovered in the second year post-fire, however the 
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species richness for the community as a whole, did not.  However, this was 

reflected across both control and burn sites, a response that aligned with a 

decrease in rainfall in those years.  Even though rainfall in 2010 and 2011 

marked the end of the Millennium Drought across regions of Australia, the 

western and central regions continued on a drying trend through 2012 to 2014 

(Bureau of Meteorology, 2017).  In fact, the annual rainfall for Scotsburn, Victoria 

(representative of the study area) has been recorded as: 2010 - 948mm; 2011 - 

912mm; 2012 - 815mm; 2013 - 705mm; and 2014 - 622mm (Bureau of 

Meteorology, 2017).    

As the monitoring of birds post-fire occurred across this time-period, the drop in 

abundance on control and burn sites may be a drought response.  

While the importance of not only the phenological development of vegetation, but 

also the competition and predation on species cannot be ignored, it has been 

shown that successful bird breeding operates within a range largely driven by two 

factors - temperature and precipitation (Baker, 1939, James and Shugart, 1974).  

Whilst this research did not have as its central focus a question directly related to 

changes in rainfall, what was clear were the decreases in abundance and 

occurrence that corresponded with substantial decreases in rainfall across 2012-

2014.  This illustrates that, even though the Heathy Dry Forest birds were resilient 

to small-scale prescribed burns of any severity, that overall, abundances may 

have been in decline.  However, it is understood that annual fluctuations in rainfall 

can have dramatic and immediate effects on bird breeding (Gibbs et al., 2011).  

Hence, the outcomes in this project illustrate the limitations of surveys that extend 

even across several years.  Longer-term studies, that can more clearly capture 
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short term pulses in breeding, along with the longer-term abundance trends and 

fluctuations, are needed to partition the effects of fire regimes under a variable 

and changing climate.  

4.4.5 A more robust design for fire severity research 

Of importance when modelling bird data is the nature in which the data is 

formatted, i.e. presence-absence data as opposed to abundance data.  It is 

important to recognize that the factors that drive the occurrence of a species may 

be different to those which influence the abundance of that species (Howard et 

al., 2014).  Therefore, the sensitivity of different bird species to fire may go 

undetected if the inappropriate form of data is used in an analysis (Kelly et al., 

2017).  There are times when outputs from models based on presence-absence 

data are best. This may be, for example, when action is urgently needed to 

protect a threatened species where rarity precludes analysis based on 

abundance data (Guisan et al., 2013).  However, as has been highlighted, 

extirpation rates for birds are increasing and species’ ranges are shrinking 

(Chapter 1.1.3).  So, where even relatively abundant birds are at risk, accurate 

predictions of ecological consequences to an environmental impact are required 

and here, abundance data is preferred (Howard et al., 2014) to capture 

demographic changes to a species’ range across the landscape (Bradstock et al., 

1997).  For a more robust set of results, a project with more bird data (either 

spatially or temporally), than what was available in this project, would allow for a 

robust analysis base on abundance models. When species are rare, there is little 

more information in variations in abundance data than in occurrence data alone. 

For more common species, abundance data contains more information and will, 
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therefore, reveal more about population dynamics than that based on mere 

presence or absence (Kelly et al., 2017).   
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Plate 19  Two common carnivores in Heathy Dry Forests, with Grey Currawong 

(Strepera versicolor) (top) possibly out-competing Laughing Kookaburra (Dacelo 
novaeguineae) in dense new-growth (2.5 – 10 year old) vegetation. 

   

Source:  Grey Currawong  – Steve Happ, Laughing Kookaburra  – Danny Gunn, Victorian Birders 
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5 Summary and synthesis of results 

5.1 Overview 

Fire is a major form of natural disturbance that shapes biome distributions 

worldwide, influences both the carbon cycle and climate, and helps to maintain 

the structure and function of fire-prone communities (Bond and Keeley, 2005, 

Bowman et al., 2009, Bradstock et al., 2010).  The ubiquitous nature of fire 

across many ecosystems therefore engenders research into the impacts of fire on 

ecological communities, necessary because of threats to flora and fauna, as a 

result of changes to fire frequency and severity (Gill, 2012).  Moreover, 

inappropriate fire regimes may threaten the persistence of species (Whelan et al., 

2010), and may even result in irreversible shifts in ecosystem states 

(Lindenmayer et al., 2011).  Understanding the different patterns between 

aspects of the fire regime, is imperative to maintaining both flora and fauna 

biodiversity. 

Fire is an agent of vegetation disturbance, that can influence avian assemblage 

patterns, with some birds responding positively to a fire event, or conversely, fire 

may pose a significant threat to those birds with narrow habitat requirements 

(Woinarski and Recher, 1997, Brown et al., 2009).  A changing fire regime has 

been flagged as one of the key drivers of avian biodiversity decline both globally 

(Birdlife International, 2008), and within Australia (Birdlife Australia, 2015).  The 

challenge lies in maintaining a fire regime in the landscape such that all habitat 

requirements for avifauna are met (Clarke, 2008, Loyn and McNabb, 2015).  Yet, 

there remain substantial gaps in knowledge on bird responses to fire.  
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Furthermore, research lags well behind the rate at which the fire regime is 

changing in levels of frequency and severity. 

Mediterranean regions around the globe are impacted by changing weather 

patterns, resulting in complex interactions between some of the factors impacting 

birds, that may result in avian species decline.  This thesis is a case study for 

examining bird responses in a Mediterranean region, where climate drivers 

combine to heavily impact bird responses.   

The south-east region of Australia has a diverse range of vegetation types.  In 

Victoria, vegetation is classified into 32 Vegetation Divisions (EVDs), each of 

which is further categorised as various Ecological Vegetation Classes (EVCs) 

(Cheal, 2010).  Heathy Dry Forest is one of the EVCs within the Grassy/Heathy 

Dry Forest EVD and patches of this forest type have been fragmented, and much 

reduced in extent.  However, areas of forest do remain, but avian species’ 

abundance trends within these landscapes are not consistent, for many species 

abundances in the entire south-east region of Australia are in decline (Birdlife 

Australia, 2015).  As fire is a pervasive component of forest and woodland 

regions in south-east Australia, an understanding of changes to the fire regime 

across vegetation types is fundamental to efforts to curb biodiversity decline.  

However, there is a paucity of research into Heathy Dry Forest bird responses.  

Therefore, this synthesis compares patterns of bird responses between the 

Heathy Dry Forests investigated in this thesis and a broader range of eucalypt 

Foothills Forests (of south-west, central and north-east regions of Victoria) (Loyn 

et al., 2003, Loyn and McNabb, 2015, Haslem et al., 2016, Kelly et al., 2017); 

semi-arid Murray Mallee vegetation (Brown et al., 2009, Taylor et al., 2012, 
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Taylor et al., 2013, Watson et al., 2012); along with the woodlands of the 

Australian Capital Territory (Watson et al., 2002).  Comparisons between results 

also draws on research that incorporates a range of vegetation communities 

including; Heathland, Forby, Foothills and Wet Forest in the Otway Ranges 

(Sitters et al., 2014a, Sitters et al., 2014b, Sitters et al., 2015), and a range of 

Foothills Forests in East Gippsland (Loyn, 1997).  While factors such as 

topography and elevation variations along with logging practices are all important 

factors impacting vegetation density, forests in the west and central regions of 

Victoria have experienced less rainfall in recent decades than their eastern 

counterparts (Bureau of Meteorology, 2017).  Research confirms that Foothills 

vegetation in Victoria is strongly influenced by rainfall (Haslem et al., 2016), and 

therefore understandably, vegetation to the west in Victoria, is less dense.  The 

research conducted in the region most similar to that of the Heathy Dry Forest 

vegetation class studied in this thesis, is that of Loyn et al. (2003), who examined 

bird responses to low severity prescribed burns in the Wombat Forest of central 

Victoria.  

Bushfire events in the south-east Australian landscape are increasing in 

frequency (Fairman et al. 2016).  Furthermore, in recent years, when bushfires 

and prescribed burn areas are combined, the result has been more area burnt.  

Whilst the prescribed burn protocol follows the ‘pyrodiversity begets biodiversity’ 

theme, not all vegetation age classes benefit all birds.  In the Otways Foothills 

Forests, avian species richness was found to be positively associated with 

vegetation age class diversity (Sitters et al., 2014a).  However, in the Murray 

Mallee vegetation, species richness was not associated with fire-mediated 
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heterogeneity.  In the Mallee, species richness reduces in regrowth vegetation 

(Taylor et al., 2012).  Similarly, in Heathy Dry Forests, Laughing Kookaburras are 

less abundant in dense new growth vegetation (2.5 to 10 years old), supporting 

the notion that regrowth vegetation post-fire is not necessarily favoured by all 

birds.  Therefore, the imperative for a comprehensive understanding on all bird 

responses is clear.   

5.2 Synthesis of results 

5.2.1 Bird responses to the temporal patterns of fire 

Successional dynamics, following disturbances such as fire, are represented by 

temporal changes in the vegetation (Clements, 1916, Gleason, 1927, Connell and 

Slatyer, 1977); for example, from pioneer to climax stage (Helle and Mönkkönen, 

1985).  Fundamental to managing fire to benefit biodiversity is knowledge of how 

the temporal arrangement of fires may influence biota (Driscoll et al., 2010).  

Therefore, much fire ecology research is based on temporal changes in species’ 

occurrence, distribution and abundance post-fire (Fox, 1982, Keeley et al., 2005, 

Watson et al., 2012, Sitters et al., 2014a).   

It is known that the immediate post-fire response of avifauna is substantial, 

occurring in response to removed or changed food resources, but that the 

response is often of short duration (Woinarski and Recher, 1997).  The results in 

this thesis for Heathy Dry Forest birds exemplify the response that Woinarski and 

Recher describe, in that immediately post-fire, abundances dropped across all 

foraging guilds, reflected across most individual species analyses.  This reduced 

bird abundance remained for only six months.  After six months, vegetation 
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resprouted and new growth developed, with bird abundances rapidly recovering.  

The caveat to this generalisation is that this research focused on those species 

driving 80% of the assemblage patterns, and further, those that totalled over 90% 

of the total birds observed.  Whilst there was a cohort of 23 species observed in 

small numbers, their numbers were too few to allow for their individual responses 

to be effectively reviewed.  Nonetheless, in Heathy Dry Forests there were no 

species identified as post-fire specialists.  This result aligns with research on the 

Shrubby Dry, Foothills and Damp Forests vegetation sites of Wombat State 

Forest (Central Victoria), in which low intensity prescribed burns resulted in little 

difference being found between bird responses on both control and burnt sites 

(Loyn et al., 2003).  In this research conducted in vegetation similar to the Heathy 

Dry Forests (in terms of climate, rainfall and vegetation), there was evidence for 

some increases in open ground foragers and seed eaters on burnt areas, but 

there were no distinct post-fire specialists.  Results in the Wombat Forest region 

suggested a high degree of stability in terms of not only total bird count 

abundances but also of species composition.  These results differ a little with that 

of Loyn (1997), who undertook research in East Gippsland, Victoria.  Loyn’s 

research area (1997) was further east than that of the Heathy Dry Forests of this 

thesis and incorporated five vegetation communities:  warm temperate rainforest, 

closed heath, dry, wet and damp sclerophyll forest.  In that research, Loyn stated 

that whilst their numbers were too low to statistically analyse, there was some 

evidence of a small carnivore influx post bushfire.  Nonetheless, most of the 

carnivores were resident birds and there were only two species (Nankeen Kestrel 

and Brown Falcon) that were not seen on other occasions.  Nevertheless, his 

results showed that some species that forage from open ground behaved as 
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early-stage specialists in the denser forest types such as rainforest (Loyn 1997).  

A further comparison can be drawn with that of research conducted immediately 

post bushfire-events of Black Saturday (2009) in Victoria (Lindenmayer et al., 

2014).  While their research highlighted complex responses by birds to 

landscape-level fire severity, they concluded that there is a paucity of species in 

the Central Highlands montane ash forests that specialize on early successional 

vegetation.  The Heathy Dry Forest result therefore broadly reflects that of other 

vegetation types across Victoria, with no foraging group or individual species 

apparent as a post-fire specialist.  

Habitat changes reflecting immediate fire impacts on bird abundances have been 

found to vary significantly between different vegetation types (Loyn, 1997).  

Loyn’s research (in East Gippsland, Victoria), described how habitats vary in their 

recovery rates and that post-fire total bird abundance was reduced to 60% of the 

initial levels, but had recovered across all vegetation types within three years.  A 

similar result was found by Lindenmayer et al. (2008), in Booderee National Park 

(southern coast of New South Wales, south-east Australia).  In their research on 

bird responses to varying degrees of vegetation complexity post-fire, they also 

found that bird assemblages had recovered in three years.  The results in Heathy 

Dry Forests suggest a more rapid recovery.  Bird abundances had recovered six 

months post-fire in the time-since-fire investigation (Chapter 3) and furthermore, 

alpha and beta diversity results (Chapter 4) suggested no changes to species 

richness or turnover between pre and post-fire bird abundances, with recovery of 

the bird community occurring within a year.    
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Broad-scale generalisations, of bird responses to fire aligned with a vegetation 

type, are not straight-forward.  Reviewing further aspects of the fire regime are 

fundamental to a clear understanding of bird responses (Kelly et al., 2017).  

Loyn’s research in East Gippsland (1997) reviewed differences between 

heathland and rainforest bird communities in terms of post-fire impacts on 

vegetation.  In his research, bushfire had in fact had minimal impact in the 

rainforest region as the physical structure had survived the fire.  Further, the 

heathland had above-ground parts of shrubs burnt, requiring below-ground 

lignotubers to sprout and these, Loyn suggested, did not offer a productive food 

source for birds within three years.  Yet, it is expected that rainforests are less 

adapted to fire and may take decades to recover (Russell-Smith and Stanton, 

2002), and that heathland recovery may be rapid (Fox, 1982).  However, results 

from Heathy Dry Forest suggest this vegetation has distinct age classes in the 

first ten years post-fire, to which species and assemblages are responding.  

Whilst the broader community showed little variation across age classes older 

than six months, individual species and foraging guilds may have been 

responding to structural vegetation changes (Chapter 3).  Furthermore, these 

structural changes were what distinguished the Heathy Dry Forest in the 

classification by Cheal (2010).  The first five divisions in the Cheal classification 

system are useful in terms of applying vegetation measures to bird responses; 

such as epicormic growth with an increased insect food supply (6 month to 2.5 

year age class), or the increased shrub cover (2.5 – 10 year age class).  

However, the divisions in this system for vegetation over 35 years were not 

tested, due to the little structural difference visible in this biome after vegetation is 

35 years old post fire.    
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Avifaunal species are attracted to particular successional stages (Bradstock et 

al., 2005, Parr and Andersen, 2006), which was evident in the Heathy Dry Forest 

biome.  In fact, the ‘habitat accommodation model’ suggests that species will 

reach peak abundance as changes in the vegetation fulfil the habitat 

requirements of each species (Fox, 1982).  In this model, species do not modify 

local physical conditions, but rather, conditions are changing in response to other 

factors (Fox, 1982).  Furthermore, rates of bird recolonization after fire depends 

on habitat development, structure and floristic aspects of the vegetation (Loyn, 

2012).  There is evidence for a ‘habitat accommodation’ model fit in Heathy Dry 

Forests.  Species increased in abundance in the regrowth and new growth 

vegetation, from an apparent response to food resource availability.  There was 

however, a distinction between the Heathy Dry Forest’s regrowth (6 months to 2.5 

years) and new growth (2.5 to 10 year) stages.  Young regrowth (6 month to 2.5 

years) appeared as epicormic growth on trunks, the ground was still bare in early 

months.  Bird species that normally fed in the canopy such as the Spotted 

Pardalote and Grey Fantail, were in greatest abundance in this vegetation age 

class.  Whilst insect responses to fire events vary across species (Elia et al., 

2011), there is evidence from research in Foothills Forests that suggests that in 

Heathy Dry Forests, the Spotted Pardalote was likely responding to an increase 

in the abundance of psyllid insects within developing epicormic growth (Loyn and 

McNabb, 2015).  The older regrowth and shooting new growth (2.5 to 10 years) 

had serotinous seedlings sprouting, and grasses and brackens were 

regenerating.  Other birds, such as the nectarivores, were in greatest abundance 

in this new growth comprising dense ground cover and flowering trees.  The 

patterns shown by the species in new growth vegetation correspond with the 
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eucalypt nectar production, important as the primary food source for these guilds 

(Ford and Paton, 1977), and also important as a resource for many invertebrates 

(Horskins and Turner, 1999).  It is during the first ten years post fire that the 

greatest differences between bird assemblage patterns were found in the Heathy 

Dry Forest.  In fact, the oldest vegetation class reviewed in this thesis showed the 

most similarity in bird assemblage patterns to other vegetation age classes, 

sharing bird species with all stages (Fig 3.8).  

It is suggested that declines in occurrence may relate to an inability by a species 

to obtain enough resources (Fox, 1982).  In Heathy Dry Forests, the Laughing 

Kookaburra exemplifies this notion.  The Laughing Kookaburra (along with other 

birds in Heathy Dry Forests), had returned six months post-fire, to vegetation with 

dense epicormic regrowth (6 months to 2.5 years).  As new growth covered the 

ground (2.5 to 10 years), abundances of kookaburras once again declined.  

Laughing Kookaburras are highly social, territorial and in fact sedentary, 

maintaining territories all year.  Further, the social group has a dominant pair 

supported by up to five helpers (Legge and Cockburn, 2000).  Assuming they fly 

from fire in Heathy Dry Forests and survive, they must be able to persist for six 

months in the territory of other Laughing Kookaburras, before they return.  Then, 

they must again leave as the revegetation creates ground cover.  Dense 

vegetation may not be suitable for a broad range of reptiles that they feed on; 

open canopy environments being essential for ectothermic animals for basking 

(Michael et al., 2011).  In fact, Loyn (1980) investigated dense stands of the 

Foothills Forests of central Gippsland Victoria, and determined that Laughing 

Kookaburras were absent.  Furthermore, Loyn (1997) found that Laughing 
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Kookaburras were most numerous in East Gippsland when there was plenty of 

open ground.  Surviving in a landscape which, on being repeatedly burnt, creates 

a perpetual ground-cover growth stage in the vegetation, may be a challenging 

issue for a species that lives for over ten years (Legge, 2000).  

Principles of competition and inhibition form a fundamental component of 

succession theory (Connell and Slatyer, 1977).  Species may out-compete one 

another for resources (Gause, 1932).  This is possibly the case with the 

carnivores in Heathy Dry Forests, with Grey Currawongs and Laughing 

Kookaburras both common species, and yet, there is a low number of sites with 

both species present (Table 3.8).  Where species are less suited, or where 

resources are less optimum, one species may out-compete the other (Fox, 1981, 

Fox, 1982).  This may be a contributing factor for the drop in occurrence of 

Laughing Kookaburras in new growth vegetation, in that, there is a drop in 

suitable prey and furthermore, there is competition for remaining resources with 

the Grey Currawongs.  Grey Currawongs have been observed foraging from 

hanging bark at canopy height (Recher, 2016).  In fact, research has shown that 

approximately 70% of their foraging is at ground level and the remaining 30% 

occurs in foliage up to five metres above ground (Recher and Davis, 1998).  In 

Heathy Dry Forests, Grey Currawongs were mostly observed foraging on the 

ground.  However, this versatility may afford them greater access to food than the 

Kookaburras – kookaburras pounce from height, onto prey that are limited in 

dense regrowth.  Nonetheless, research has shown that Grey Currawongs and 

Laughing Kookaburras do in fact coinhabit the same areas.  Recher and Davis 

(1998) found that on eight woodland sites, censused over a two-week period, 
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Laughing Kookaburras were observed on two of eight sites; both of which also 

had Grey Currawongs.  Similarly, in Heathy Dry Forests, both species were 

observed within the same site on numerous occasions (Table 3.8).  However, the 

frequency dropped when ground cover was dense.  The ability to coexist in an 

area means that prey must be ample. In the Heathy Dry Forest post-fire, dense, 

new growth, the competition for a limited food supply may be too great for the 

Laughing Kookaburra.   

Reporting by Birdlife Australia (2015) is not explicit in suggesting reasons for the 

recent, rapid decline of the Laughing Kookaburra.  Their report highlights that the 

entire avian community of the south-east region of Australia is under threat, and 

that the decline of the Laughing Kookaburra is of concern.  Research by 

MacNally et al. (2009) describes the role that drought has played in reducing 

Laughing Kookaburra numbers.  As more of the forest landscape is burnt in area 

each year by bushfires and prescribed burns, and areas of Heathy Dry Forest 

perpetuate a dense new-growth vegetation, Laughing Kookaburra abundances 

may decline in Heathy Dry Forest regions - regions being impacted by an 

increase in fire frequency and extent, and underpinned by a drying climate.  It 

may be that the mainstay for the Laughing Kookaburra may become semi-rural, 

rural and agricultural regions that provide an open landscape, with nearby water 

holes and with trees, old enough to have hollows. 

A number of challenges exist, when managing for different vegetation types in the 

landscape.  As both research in the arid Mallee region along with research on the 

forests of the Otways Ranges in southern Victoria showed, rates of resource 

development can be highly variable (Haslem et al., 2011, Sitters et al., 2014b). 
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Furthermore, as Mallee research showed, further exemplified by the Laughing 

Kookaburra response in Heathy Dry Forests, management strategies promoting  

new growth and regrowth vegetation will not necessarily benefit all species 

(Brown et al., 2009, Taylor et al., 2013, Connell et al., 2017).  Management focus 

must be clear that while many species will increase in abundance in regrowth (6 

months to 2.5 years) and new growth (2.5 to 10 years) vegetation (Chapter 3), 

and indeed, these vegetation age classes are where nectarivore abundances 

may reach their peak (Figure 3.3); there are species whose abundances will 

decline in dense new growth.  

Another challenge in managing the biodiversity of birds within Heathy Dry Forests 

may be related to scale.  The ‘shifting-mosaic steady state’ suggests that if the 

distribution of vegetation is averaged over sufficient space or time, the proportion 

of the landscape at each successional stage is constant and the landscape is in 

equilibrium.  This is despite the fact that non-equilibrium states are evident at 

smaller scales (Bormann and Likens, 1979).  Whilst this concept does 

acknowledge that spatiotemporal variations are disturbance driven, it overlooks 

the complexities that may arise from multiple disturbances (Mori, 2011).  It does 

not consider that some vegetation communities, such as Heathy Dry Forests, are 

heavily fragmented, with bushfire frequency expected to increase (Pitman et al., 

2007), in a region that is on a drying trend.  Other research has exemplified the 

resultant issues from low rainfall levels, by highlighting how rainfall is a dominant 

influence on vegetation and therefore, low rainfall impacts the species richness of 

native animals (Kelly et al., 2012, Sitters et al., 2014a).   
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Further exemplifying the need to review drivers of change together, research in 

woodlands of the Australian Capital Territory has shown how reducing both 

woodland patch size and vegetation complexity, impacted species not previously 

identified as threatened.  Of the seven species this research identified (Weebill, 

Brown Thornbill, Buff-rumped Thornbill, Spotted Pardalote, Grey Shrike-thrush, 

Scarlet Robin and White-winged Chough), all were observed in the Heathy Dry 

Forest research and only the Weebill was not noted as a common species 

(Watson et al., 2003).  Heathy Dry Forest investigations in this research made 

clear that the common species’ responses are broadly representative of the guild 

they represent.  Therefore, monitoring those species noted as common in Heathy 

Dry Forests, and flagged as being impacted by threatening processes by Watson 

et al. (2003), may be valuable, to flag potential issues for other less common 

species.   

If the fire management goal in a region is to perpetuate natural fluctuations in 

vegetation structure, the abundances of species dependent on vegetation 

structure may fluctuate as well.  This has implications for bird biodiversity, 

exemplified in research conducted in semi-arid Mallee vegetation (Haslem et al., 

2011).  In this research, authors state that fire management must explicitly 

acknowledge that fire affects fauna and fuel differently, over extended time-

frames.  In fact, researchers into Mallee fire landscapes argue that the application 

of a ‘pyrodiversity begets biodiversity’ paradigm, converting long unburned 

vegetation to young regrowth, is a direct threat to bird diversity (Taylor et al., 

2012).  Heavily impacted landscapes favour generalist species, species that are 

better able to utilise changes in land-cover type (Wiens, 1989, Le Viol et al., 
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2012, Watson et al., 2014).  Indeed, this is the case in Heathy Dry Forests, with 

the uncommon species comprising only one percent of the total community.  If 

fire management fails to recognize and manage for the requirements of the rarer 

species, localised extinctions may result.      

5.2.2 Bird responses to an increase in fire frequency in the landscape 

Woinarski and Recher (1997) discuss how fire is a major threat to birds of 

fragmented, eucalypt forests in that fire may limit the resources of birds whose 

distribution is already restricted.  Furthermore, those with limited reproductive 

potential or poor dispersal abilities are significantly threatened.  They highlighted 

then (in 1997) that of greatest significance as a threatening process to avian 

communities, was an increase in fire frequency.  Indeed, in Victoria the increase 

has been realised, not only in terms of the frequency of ‘mega-fires’ (Fairman et 

al., 2016) but with the application of prescribed burns increasing area burnt 

(Teague, 2010).   

Whilst studies have determined that an increase in fire frequency in some 

vegetation types may result in a simplification of the vegetation structure with a 

reduction in the understorey (Albanesi et al., 2012), the structure of the Heathy 

Dry Forest tends to become simplified through time, naturally. As the vegetation 

matures, the structure of the understorey greatly reduces.  By 35 years, the 

Heathy Dry Forest has a vertical profile that has simplified to one consisting 

largely of ground cover, bark and a canopy.   

Comparisons of bird responses, between Heathy Dry and Foothills Forests, may 

be most relevant in a review of fire frequency impacts on birds because in part, 
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these vegetation communities are similar.  The slopes and ridges of Foothills 

Forests support drier, more open forest dominated by eucalypts (Kelly et al., 

2017), much like that of Heathy Dry Forests.  Maximum vegetation diversity 

estimates in Foothills Forests vary from approximately 50 to 100 years (Loyn, 

1980).  However, the distinct vegetation stages in the first ten years post-fire that 

birds are responding to, that impact the structural stages in canopy, bark and 

ground layers, are similar between both the Heathy Dry and Foothills vegetation 

types (Cheal, 2010).   

There was limited evidence for a fire frequency response by birds in Heathy Dry 

Forests.  There was little discernible difference in the bird community response 

between sites burnt once in the last 20 years, compared with sites frequently 

burnt.  In fact, it was clear that birds were responding to the distinct successional 

changes in vegetation, since the most recent fire (Chapter 3.4.3).  Haslem et al. 

(2016) investigated multiple fires in patches of Foothills Forests across central 

and eastern Victoria.  Their results were similar to the current results, in that they 

found little evidence for post-fire succession being influenced by fire history.  

Aponte et al. (2014) had investigated the impact of repeated prescribed burns on 

coarse woody debris in the Wombat State Forest (central Victoria), and found that 

repeated burns have the potential to significantly decrease coarse woody debris 

stocks.  Haslem et al. (2016) stated that coarse woody debris is an important 

resource in foothills forests.  But nonetheless, they found minimal effects from 

preceding fires on vegetation structure.  However, Haslem et al. (2016) argue that 

consideration must be given to future, shorter inter-fire intervals and more severe 

fires, both potentially impacting important resources such as coarse-woody debris 
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and hollow-bearing trees in Foothills Forests.  Indeed, as was evident in Heathy 

Dry Forests with the cavity-nesting White-throated Treecreepers, removal of nest 

sites may have resulted in a reduction in the occurrence of treecreepers the 

second spring after fires (Chapter 4). 

Even though community and foraging guild responses to fire frequency were 

minimal in Heathy Dry Forests, there were three species of carnivore that 

responded to the frequency of fires on sites.  The Laughing Kookaburra and the 

Australian Raven both preferred sites that had experienced infrequent burning, 

with their greatest abundances apparent in open, older, unburnt vegetation.  Grey 

Currawongs however, preferred sites that had been frequently burnt.  In Heathy 

Dry Forests carnivores may be impacted by competitive exclusion, competing for 

prey that is less abundant or obscured (Chapter 3).  It would be of benefit to have 

a larger spatial and temporal database of Heathy Dry Forest carnivore 

observations, to further investigate the relationships between the carnivores.  

Indeed, research has highlighted that carnivore numbers in avian datasets are 

often low, limiting analyses and subsequent discussions on this guild (Recher et 

al., 1985, Recher and Davis, 1998, Loyn et al., 2003). 

Thomas et al. (2006) described the challenges that arise when attempting to 

determine the cause of range changes for species, when some of the combined 

factors affecting distribution are related to a changing climate.  Indeed, this thesis 

described the complex drivers of climate that change fire weather in the south-

east Australian and more specifically, Victorian regions.  If the goal is to limit 

biodiversity decline, then ongoing research on bird responses to fire frequency 

may well need to be designed such that data modelling can capture responses to 
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numerous questions related to different aspects of the fire regime.  While the 

results in this thesis suggested a limited response by Heathy Dry Forest birds to 

fire frequency, this response was based on a measure of the number of times a 

location had been burnt in recent decades.  This result aligned with work by Loyn 

et al. (2003), in the Wombat State Forest, in which he found a high degree of 

stability in total bird abundance in vegetation subject to one of five experimental 

low-intensity repeated burning treatments.  However, more recent research by 

Kelly et al. (2017), in their investigations on flora and fauna in Foothills Forests in 

the Central Highlands, Victoria, determined that in fact, inter-fire interval was the 

most important variable for plants and animals when data were pooled.  An 

example of their extensive results is that they found that the occurrence of some 

bird species, particularly the Eastern Yellow Robin and White-Browed Scrubwren 

(both species in Heathy Dry Forests), increased with longer fire intervals.  This 

highlights the importance of project design capturing results that reflect the 

changes in the vegetation that the birds are responding to, combined with a fire 

frequency factor.   

Underpinning succession theory is the concept of the ‘vital attributes’ of the 

vegetation species in a community.  These are the life-history characteristics vital 

to the role of the dominant vegetation species in a replacement sequence (Noble 

and Slatyer, 1980).  Victoria’s vegetation classification system, modified by Cheal 

(2010), incorporates ‘vital attributes’ for the dominant vegetation species within 

each vegetation group.  For Heathy Dry Forests, the minimum ‘tolerable fire 

intervals’ are 10 years post-prescribed burn and 15 years post-bushfire, required 

for the dominant species to persist (Cheal, 2010).  The current research 
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determined that the measure of tolerable fire interval, is not of value in predicting 

bird responses in Heathy Dry Forests (Chapter 4.3.4.9).  Whilst research has 

been undertaken to review fire frequency in terms of an inter-fire interval in 

Foothills Forests (Leonard et al., 2016, Kelly et al., 2017), to the best of my 

knowledge, minimum ‘tolerable fire interval’ limits have not previously been 

tested, for their efficiency as predictors of bird abundances in Heathy Dry Forests.  

If the aim is to investigate fire frequency impacts on avian species, then project 

design incorporating an inter-fire interval will result in output that gives more 

meaningful results, as inherent in this type of design, avian species’ tolerance 

thresholds will be tested. 

5.2.3 Bird responses to the different severities of prescribed burns 

Prescribed burns are applied to the landscape in Victoria with increasing 

frequency, collectively covering a large expanse of land.  Whilst the application of 

fire is primarily to reduce bushfire impacts, prescribed burns are also carried out 

in efforts to increase biodiversity (Penman et al., 2011).  Hobbs (2010) described 

how the use of fire for habitat maintenance and diversity assumes there will be 

some optimum frequency that will maintain vegetation diversity.  Hobbs explained 

that this is a complex process due to a lack of detailed information on the 

population dynamics of many species, however he is referring to only vegetation 

species.  Indeed, the process is complex.  While the case can be made that 

prescribed burns in Victoria known as Ecological Burns are designed to burn at 

varied intensities to achieve different goals of fuel reduction, fire intensity and fire 

severity are not the same thing.  A burn designed as low intensity may be 

impacted by weather conditions on the day and result in a high severity fire.  Fire 
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management needs to consider that prescribed burns of high severity may result 

in varying bird responses, rather than assume that all prescribed burns will be of 

low and controlled impact.  Whilst the literature on the faunal responses to fire is 

increasing, some argue that there is a paucity of information on how animals 

respond to fire severity (Kotliar et al., 2007, Lindenmayer et al., 2013).  To the 

best of my knowledge, this Heathy Dry Forest investigation on the impacts of 

different severity prescribed burns, is the first study of this kind in this vegetation 

type. 

There are knowledge gaps on broad-scale wildlife responses to fire (Clarke, 

2008) and while there is some research into prescribed burn impacts on fauna 

(Tolhurst, 1992), there is still insufficient data to determine if current prescribed 

burn practices have been successful in meeting multiple objectives (Penman et 

al., 2011).  Furthermore, the assumption is broadly made that prescribed burns 

will be of controlled intensity and severity; reduce only a portion of fire fuel from 

the landscape.  In fact, research by (Loyn et al., 2003) investigated the effects of 

repeated low-intensity fire on bird abundance in Foothills Forests and the project 

design was such that the five fire treatments investigated incorporated only low 

severity burns.  This project formed part of a multidisciplinary project (Tolhurst, 

1992), designed to address questions related to fuel reduction burning in Foothills 

Forests.  However, as this thesis showed, not all prescribed burns result in low 

severity impacts to the vegetation structure to which birds are responding.  The 

case may be argued that the burn objective may be to remove a large percentage 

of fuel cover, however it is doubtful that the intent would be to remove all tree 
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bark-cover and canopy.  However, this situation can and does occur (Plates 8 – 

16).  

For prescribed burns to be an effective form of fire management in the Victorian 

landscape, and one that results in a positive outcome for bird biodiversity, a 

broad-scale knowledge of a proposed burn area is required.  Indeed, Pastro et al. 

(2014) argued in their extensive investigation into vertebrate alpha and beta 

diversity responses to bushfire and prescribed burns across both northern and 

southern hemisphere, that ecological theory underpinning prescribed burn 

process, such as patch mosaic burning, is context dependent.  This argument 

was based on their disparate responses of vertebrate diversity (both alpha and 

beta) to fires.  Their argument was that ‘no one-size-fits-all’, as they highlighted 

that both high and low severity burns can result in positive effects on affected 

taxa. 

Birds in Heathy Dry Forests showed little evidence for a prescribed burn severity 

response.  Research by Loyn and McNabb (2015) investigated short term 

responses to bushfire in a Damp Heathy Woodland is south-east Victoria (Bunyip 

State Park).  They found that after severe fire, birds were 77% less numerous in 

the first winter post-fire but that some redistribution had occurred by the first 

spring.  Indeed, the current research on Heathy Dry Forest bird responses may 

have displayed a similar trend.  The burns were in autumn, and the bird 

observations used in analyses were collected the first and second spring, post 

fire.  There was no investigation into the immediate decline in abundance post-

fire across winter months, however by the first spring, results showed that 
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assemblages had recovered.  Therefore, results suggest a rapid recovery by 

most species, regardless of a prescribed burn severity.   

Results from this research, when combined with results from work by others, 

suggest that the impacts from a severe fire may be confounded by fire size.  

Lindenmayer et al. (2014) reviewed bird responses to the bushfires of Black 

Saturday, across Victoria.  In their research, pre-fire bird data enabled a 

comprehensive pre and post burn assessment of a day of extensive severe fires 

across Victoria.  They found strong evidence of the effects of landscape-level fire 

severity and fire extent on bird species richness.  Whilst there are clearly many 

differences between a whole-of-landscape severe bushfire and a controlled 

prescribed burn (eg fuel loads, fire weather and climate on the day), the severe 

fires of the Heathy Dry Forest prescribed burns were quite different in that extent 

was reduced, compared to the extensive and comprehensive fires of Black 

Saturday.  The Heathy Dry Forest prescribed burns were not whole of landscape. 

Prescribed burns were small and close to unburnt vegetation stands (Chapter 5). 

Some research into fire severity impacts emphasises the degree of canopy burn 

as being a major determinant of bird responses to fire severity.  Haslem et al. 

(2016), in their research across the Foothills Forests of central and eastern 

Victoria, focused questions on frequent fires.  However, their findings were 

relevant to fire severity.  They argue that the primary way fire affects vegetation 

structure is via attributes such as fire severity.  They found that the severity of the 

most recent fire influenced post-fire canopy regeneration, that low severity fires in 

Foothills Forests rarely affect canopy strata.  Further to this, Lindenmayer et al. 

(2014) found in their research into the Black Saturday bushfire impacts on birds, 
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that most species persist when the overstorey remains intact.  However, in the 

Heathy Dry Forest, both alpha and beta diversity comparisons, between pre and 

post-fire bird abundances, were unchanged, regardless of fire severity.  This 

speedy recovery of bird assemblages was evident on-ground, as birds were 

numerous in the extensive regrowth vegetation.  In fact, birds from the canopy-

feeding guild were abundant in the epicormic regrowth.  

Broadly, the Heathy Dry Forest bird community was not impacted by severe 

prescribed fire.  However, there was one species impacted by severe burns.  The 

White-throated Treecreeper reduced in occurrence in the second breeding 

season post-fire.  Haslem et al. (2016) discuss how the severity of the most 

recent fire will strongly influence key resources.  As the White-throated 

Treecreeper maintains site fidelity, it is possible their nesting and roosting sites 

were reduced.  Haslem et al. (2016) argue that fires in Foothills Forests are not 

stand-replacing and that canopy species survive even severe individual bushfires 

and regenerate. However, as the Heathy Dry Forest research has exemplified, 

severe fires, even those of prescribed burns, may in fact remove sites for nesting 

and roosting.  Nesting sites are critical to both birds and mammals displaying site 

fidelity (Lindenmayer et al., 2013), though most hollow-dependent birds only use 

hollows for nesting and hence only need them in breeding season.   

Varying the severity of prescribed burns in the landscape will therefore impact 

birds by the degree with which nesting or roosting sites and hollows are removed.  

As many avian species display site fidelity, territorial birds and those flying short 

distances, will be the species most affected by severe prescribed burns.  

Furthermore, severe prescribed burns carried out in spring, may therefore not 
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only kill young but also impact birds by completely removing the nest site.  Lastly, 

fire size is important.  In landscapes, such as Heathy Dry Forests, fragmented 

patches of forest may afford little vegetation close by for birds to move in to post-

fire, while the burnt forest regenerates - regardless of the speed of vegetation 

recovery.   
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“While it is reasonable to expect management agencies to have 

taken reasonable preparatory measures to limit the negative 

effects of large fires, it needs to be acknowledged that the 

capacity of management agencies to control widespread wild 

fires ignited by multiple lightning strikes in drought conditions 

on days of extreme fire danger is going to be similar to their 

capacity to control cyclones.  If the public could allow agencies 

and their political masters to become a little less defensive, the 

climate might be right for a more rigorous examination and 

refinement of the ecological basis of fire management in this 

country.” 

 

Clarke, M. (2008), Catering for the needs of fauna in fire management:  science or just wishful 

thinking? P390 
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6 Discussion – the future for the birds in the 
forests of south-east Australia 

 

6.1 Birds surviving in a changing fire regime 

Fire regimes across Australia exhibit biogeographical variations (Bradstock, 

2010), with differences in fire patterns largely determined by variations to rainfall 

(Russell-Smith et al., 2007), impacting both the biomass growth that supplies fire 

fuel and the dryness of the landscape, hence its capacity to burn (Bradstock, 

2010).  The climate in Australia is changing, in that global warming is resulting in 

a change to baseline temperatures, above long-term variability.  In fact, Bureau of 

Meteorology figures released for winter 2017 in Australia highlighted that the 

mean maximum temperatures, recorded for Australia as a whole, were 1.9° C 

above the baseline 1961 to 1990 average (Bureau of Meteorology, 2017).  It is 

predicted that there is a ninety percent chance that global temperatures will rise 

by 2.0° C to 4.9° C this century (Raftery et al., 2017). While these predictions 

have large errors, at least some level of global warming is expected, regardless 

of future carbon emission controls, due to the legacy from past emissions 

(Mauritsen and Pincus, 2017).  Under warming scenarios of an increase of only 

1.5° C, El Niño episodes are predicted to become twice as frequent (with five 

events per century increased to ten) (Cai et al., 2014).  Such events lead to hot 

dry summers in south-eastern Australia, with increased risk of severe bushfires.  

Research analysing the impact of climate change on fire indicate an increase in 

fire frequency (Beer and Williams, 1995, Cary, 2002).  Analyses of more recent 

results concluded with a suggested increase in temperature resulting in an 
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increase in forest fires across much of Australia (Pitman et al., 2007).  The 

predictions are for bushfire events to become more frequent and extreme. More 

‘mega-fires’ are ‘on the horizon’. 

A changing climate is resulting in complex interactions between the drivers of fire 

weather in the south-east Australian region.  With a goal of reducing avian 

biodiversity decline, extensive research efforts need to continue, to increase and 

update the database on bird responses to fire frequency.  This creates a set of 

challenges.  One challenge is that the tolerable fire intervals required for 

vegetation to persist do not necessarily translate to the inter-fire interval required 

for avian species to remain within tolerable survival limits.   

A second challenge it that the synergies created by complex climate drivers 

impacting the fire regime, may result in complex outcomes for birds, that may 

challenge interpretations.  An example of this is in the recent discussions 

between authors interpreting mammal responses to factors of fire frequency and 

extent of fire, as authors discussed differing views on aspects of mammal 

responses to fire size (Griffiths et al., 2015a, Griffiths et al., 2015b, Russell-Smith 

et al., 2015).  As numerous drivers impact bird responses, differing views on the 

reasons underpinning responses may ultimately impact fire management 

decisions. 

As mega-fires impact on human life and assets, the management response may 

ultimately be one based on perceived best-benefit to people, rather than one that 

best serves biodiversity (Teague, 2010).  However, prescribed burn area quotas, 

as opposed to strategic burning, are not in the best interests of protecting assets 
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or for maintaining all levels of biodiversity.  A recent shift in Victoria, from a quota-

based burn strategy to a risk-based approach supports this view.  Perpetuating 

dense new growth vegetation may in fact increase fuel load and furthermore, 

dense new growth vegetation stages are detrimental to the ongoing persistence 

of iconic species such as the Mallee Emu-wren and the Laughing Kookaburra.  

However, the challenge lies in best serving community when mega-fires do occur; 

pressure comes to bear on fire managers in that they need to be seen to be 

responding and reacting to fire events and doing all necessary to ameliorate 

impacts from future fires.  Yet, some argue that there is little empirical basis for a 

patch-mosaic protocol in burn management and therefore, fire managers lack 

clear guidance on how to best optimise fire management strategies (Griffiths et 

al., 2015b).  What is clear is that a ‘pyrodiversity begets biodiversity’ protocol 

benefits many Heathy Dry Forest birds but does not benefit all species. Fire 

management processes must view each region flagged for burning, 

independently.  Not only do bird species have a varied range of requirements, but 

vegetation stands of similar species will differ markedly across Victoria, in 

response to differing levels of rainfall.  This will result in spatial variations in bird 

responses. 

Victoria’s Flora and Fauna Guarantee Act lists, as a threatening process:  

“Inappropriate fire regimes causing disruption to sustainable  ecosystem 

processes and resultant loss of biodiversity” (Department of Environment Land 

Water and Planning, 2017).  Therefore, Recommendation 56 (Teague, 2010), 

with its purpose of increasing area burnt in the landscape, could be viewed as a 

threatening process. There is a dilemma in this, in that there is a planning 
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challenge, as more people move from city locations to rural and semi-rural 

properties.  What will happen in the coming decades as increases in temperature 

result in more bushfires?  The compromise will be surely to sacrifice parts of the 

landscape to repeated, regular burning, to keep fire fuel in these areas to a 

minimum.  This may mean that we need to maintain large wooded areas where 

the fire regime is managed for the needs of the biota, quite separate from those 

areas of the landscape where the emphasis is on protecting private property.  

6.2 Management of a Heathy Dry Forest landscape 

Long-term planning is critical for ensuring a long-term conservation success for 

birds in Heathy Dry Forests.  The challenge lies with incorporating climate 

changes, land-use changes and fire responses into any management framework.   

Modelling bird responses to fire in Heathy Dry Forests showed that the response 

to the scale of a fire varied.  Broad guild responses had more parsimonious 

relationships with site scale elements, as all models of best fit had site nested 

within the mosaic.  Yet, individual species modelling highlighted that some 

species had more parsimonious modelling with mosaic elements, reflecting 

landscape scale responses.  Responses were not consistent for all species within 

the one guild.  For example, with nectarivores, the White-eared Honeyeater had 

more parsimonious relationships with site level and yet the Eastern Spinebill 

models were most parsimonious with mosaic.  A landscape scale response by 

some birds aligns with research by others from both Eucalypt Foothills Forests 

(Leonard et al., 2016) and in the Central Highlands of Victoria (Lindenmayer et 

al., 2014), in that burned areas around sites may act as population sinks 

(Lindenmayer et al., 2014).  Further, with high mobility and with many species 



 

 

6-213 

 

having large home ranges, bird responses may be better reflected by landscape 

variables than site variables (Leonard et al., 2016).  This highlights that 

responses are complex and while guild results are useful, individual species may 

each respond differently.  To capture all responses and to manage for all species 

such that all persist in the landscape, a framework needs to consider as many 

variations as possible. 

Research by Tulloch et al. (2016) outlines a management process for the best 

range of fire intervals for keystone plant species.  A version of this approach 

could be adopted for managing the Heathy Dry Forest in Victoria. 

The research by Tulloch et al (2016) incorporated the development of ‘time-

varying transition matrices’ to determine whether their target vegetation species 

would, throughout all growth stages, survive different fire regime scenarios.  In 

their research they created a framework of four scenarios:  no burning, periodic 

management burning, random wildfire burning and current wildfire and periodic 

management burning.  With these four scenarios, they modelled plant 

development and growth over time, with varying levels of vegetation-patch 

connectivity.   

The responses by birds in the Heathy Dry Forest falls broadly into two groups: 

those that flourish in dense post-fire new growth, and those that require open 

stands of vegetation.  These two requirements are in direct conflict.  It is clear 

that a ‘pyrodiversity begets biodiversity’ premise does not suffice.  The challenge 

is in creating a patchwork of Heathy Dry Forest such that all species persist.  The 

challenge is made all the more complex when drought conditions prevail, bushfire 
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becomes more frequent, and prescribed burns are undertaken right throughout 

the year to protect human life and assets.  The patches of Heathy Dry Forest in 

Central Victoria are few – interspersed in a landscape that largely consists of 

agricultural fields and urban developments.  The imperative is to create a 

framework that models outcomes of fire scenarios, to aid in effective 

management – to control and plan prescribed burning so that an adequate extent 

of aged, open patches remains amongst the new growth. 

The results by Tulloch et al. (2016) illustrate that no single management strategy 

is effective in maintaining populations of all species.  Instead, diversity in their 

work was maximised after they investigated combinations of environmental 

conditions and patch connectivity under different fire scenarios.  So too, Heathy 

Dry Forest patches will benefit from a management process that attempts to 

frame connectivity, fire responses and climate into one framework.  

6.3 The Laughing Kookaburra impacted by ‘synergistic wicked 
problems’  

In an era where changes in global temperatures are impacting the frequency and 

intensity of drought, flood and fire events, there is a new level of complexity to the 

phrase ‘wicked problem’ - we now have, ‘synergistic wicked problems.’  These 

can be defined as multiple wicked problems, where the application of one or more 

‘wicked problems’, compounding a ‘super wicked problem’, will create as yet 

unknown results, as one of the problems is driven by a changing climate.  While 

research has already highlighted the complex effects that can be created by 

combining different drivers of native species decline (Thomas et al., 2006), it 
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could be expected that synergies could result when a changing climate is one of 

the drivers.  This may be the case for the Laughing Kookaburra. 

The first ‘wicked problem’, that impacts the range and affects the abundance and 

occurrence of the Laughing Kookaburra, is that of ‘development’.  This impacts 

the Laughing Kookaburra in two ways: extensive land clearing across Australian 

States removes the old hollows that Laughing Kookaburras require; and, a permit 

process in Victoria permits land-owners or developers to ‘control’ this species.  

Not restricted in its impacts on only the Laughing Kookaburra, land development 

and management will always be at odds with many native species, as more and 

more native vegetation is removed for urban spread.  Further, management of 

native animals, by removal from either public or private lands, will continue to 

divide community opinion. 

The second ‘wicked problem’ that affects the Laughing Kookaburra, impacts its 

level of protection by its exclusion from research and hence protection 

processes.   The two Australian states of Western Australia and Tasmania do not 

consider it a native species.  As its major decline is down the east coast of 

Australia, the Tasmanian status is of most concern.   The Laughing Kookaburra 

was known to be introduced to the north and the north-west of the state in the 

early 1900’s (Green et al., 1988), and it is referred to in literature as an exotic 

species (Green et al., 1988, MacDonald and Kirkpatrick, 2003, Koch et al., 

2008).  Koch et al., (2008) reviewed threatening processes to hollow-using 

vertebrate fauna and stated that, as the Laughing Kookaburra is an introduced 

species, there was no need to review any potential threatening processes for 

their ongoing survival.  Further, it has been suggested that possibly thousands of 
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kookaburras have been killed in Tasmania by individuals hoping to conserve 

native fauna (Green et al., 1988).  As the research by Green et al. (1988) was 

published some decades ago, this situation may no longer be occurring.  The 

decline in this species on the mainland of Australia could require Tasmanians to 

review their conservation processes and include the Laughing Kookaburra in 

management processes as a native species.  Just as efforts are made to 

preserve and protect the Tasmanian Devil, and in doing so they are moved to and 

raised in Australian locations other than Tasmania; it is possible that as a century 

has passed since their introduction into Tasmania, the Laughing Kookaburra 

does, in fact, need Tasmania’s focus and protection.  There is likely to be ongoing 

resistance, which will challenge moves to implement measures in the interest of 

the Laughing Kookaburra.   

Finally, a ‘super-wicked’ problem impacts the occurrence and abundance of the 

Laughing Kookaburra.  Abundances have been shown to decrease after 

prolonged periods of drought (MacNally, 2009).  Further, this research highlights 

a reduction in Laughing Kookaburra occurrence and abundance in post-fire new 

growth vegetation.  As results here showed, while Grey Currawongs and 

Laughing Kookaburras do co-exist, there is the possibility that competitive 

exclusion may be contributing to the decline of Laughing Kookaburras in regrowth 

vegetation.  This requires further investigation. 

Research by Opdam and Wascher (2004) discusses how combining the two key 

pressures of habitat fragmentation and climate change on biodiversity, will result 

in synergetic effects.  This is largely due to the different spatial scales involved – 

the local range contraction of species combined with the dynamic climate aspects 
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that occur at a landscape scale.  They state:  “Future biodiversity research and 

conservation strategies are facing the challenge to re-orient their focus and scope 

by integrating spatially and conceptually more dynamic aspects at the landscape 

level”.  This is clearly the challenge for the conservation of the Laughing 

Kookaburra, as focus and scope needs to include a complex set of factors, which 

includes a dynamic climate.     

Barrett et al., (2003) noted that there was no change in Laughing Kookaburra 

abundances from the 1977-81 atlas to the 1998-2002 atlas however, in the 

current State of Australia’s Birds Report (2015), a major decline is reported.  Little 

more than a decade has passed, and the reality is that one of Australia’s most 

iconic species is threatened due to processes from ‘synergistic wicked problems’.  

6.4 The future for bird biodiversity in Heathy Dry Forests 

One percent of the abundance of Heathy Dry Forest birds comprises the 

uncommon species.  Put into context, there are 23 species making up the 1% - 

approximately 41% of the total species (56) recorded.  In the observations of over 

10,000 birds, these uncommon birds were observed at the rate of approximately 

one every two hours, as opposed to the more common species that were 

recorded at an average rate of 45 per hour.  This poses a challenge for 

ecologists, as recordings can be so few and collecting data for implementing 

meaningful conservation measures takes time.  

We have data bases now that are larger and more robust, and so we have a 

capacity to monitor declines in what would be thought of as secure species. But 

these are facing new threats, with warming and drying climates and these threats 
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bring management responses that may be largely directed at protecting people 

before biodiversity.  It should not be a surprise that we will experience another 

wave of biodiversity decline in response to the drivers of the ‘Great Acceleration’. 

So, our birds are facing new and unpredictable risks in coming decades. If we 

use these data bases, aware that, like the iconic case of the Passenger Pigeon 

(Ectopistes migratorius), bird populations can and do crash, we can be 

forewarned and act before populations contract to the point where their resilience 

is compromised. The next wave of endangered species may well be those we 

see commonly today.  We will almost certainly lose some that comprise the 1%, 

at least locally.   

The Heathy Dry Forest bird community responses to fire are complex.  So too will 

be the plans to manage for the conservation of all birds in this forest.  On the 

level of foraging guild, the omnipresent nectarivores in regrowth and dense new 

growth vegetation seemingly flag that a protocol of burning the landscape is of 

great benefit.  For this guild, there is no doubt, for even the uncommon of the nine 

species of nectar feeders observed were found amongst the regrowth.  In 

contrast, an entire guild of open ground foragers, such as the Australian Magpie, 

have a preference for the open ground around the base of trees, dense with 

epicormic regrowth.  Then there are the tall-shrub insectivores, like the Brown 

Thornbill, that prefer the older, more open vegetation.  Management of the 

Heathy Dry Forests must consider all guild responses, to ensure the persistence 

of all species. 

There were two species that were highlighted in this body of research: the White-

throated Treecreeper and the Laughing Kookaburra.  Both are hollow-nesters.  
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Both are likely to be greatly impacted as fires increase in frequency, for the 

chance of remaining old-growth trees persisting decreases with each fire event.  

Neither bird will persist in a landscape devoid of old trees with hollows.  Indeed, 

the White-throated Treecreeper is nest specific.  It therefore becomes crucial that 

some of the landscape of old vegetation is protected as much as possible, and 

not subjected to prescribed burning, to ensure the persistence of hollow-nesting 

birds.       

Data bases, and our scientific capacity to interpret them, provide us with the 

capacity to predict risks to our biodiversity.  However, risk identification and 

appropriate landscape management requires a steady hand.  The implementation 

of an eight percent prescribed burn recommendation after a major conflagration 

was not indicative of the steady hand we need to manage biodiversity, and risk to 

our property, in our landscapes into the future.  Risks to biodiversity rely on the 

knowledge base, an educated society and the wisdom to implement measures 

that protect all assets, natural and cultural.  
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Plate 20  The White-eared Honeyeater, Lichenostomus leucotis, is the most 

abundant nectarivore in Heathy Dry Forests. 

 
 

Source:  Harvey Perkins 
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8 Appendices 

A1.  Graphing outputs: a comparison between modelling techniques using 
vegetation age classes versus continuous age data.  

Generalized linear mixed models.  Heathy Dry Forest abundance graphs for avian foraging guilds, 
with data presented using both continuous and categorical vegetation age measures.  Continuous 
data is modelled twice: with and without raw data, to highlight outliers. All birds observed over 
eight monitoring sessions (2012-2014) on 84 sites in heathy dry forests of central Victoria are 
included, with the exception of two guilds: frugivores (with only two individuals observed) and 
water birds (with six individuals observed).  Full model design carried out in the R Statistical 
environment (R Development Core Team, 2008).  Model selection based on random effect 
structure (site within mosaic) and dispersion parameters and ranked using Akaike’s Information 
Criteria (AICc).  Representative models for each age measure were compared using gamm4 
(Wood and Scheipl, 2014), to test for the most parsimonious model.   Raw abundance data is 
presented on the continuous graphs.   
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A2  Graphing outputs: community and foraging guild responses to time since fire and fire frequency.  

Generalized linear mixed models.  Heathy dry forest abundance graphs for avian foraging guilds, with data presented using categorical vegetation age 
and fire frequency measures.  All birds observed over eight monitoring sessions (2012-2014) on 84 sites in heathy dry forests of central Victoria are 
included, with the exception of two guilds: frugivores (with only two individuals observed) and water birds (with six individuals observed).  Full model 
design carried out in the R Statistical environment (R Development Core Team, 2008).  Model selection based on random effect structure of mosaic 
(community) or site within mosaic (guilds), and dispersion parameters, and ranked using Akaike’s Information Criteria (AICc).   

 

TSF categories: tsf1 0-6 months, tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 35 years, tsf5 35+ years, combined with last burn not 
recorded.  

Fire frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 one burn within last 20 years, or, one fire within last 20 years plus one fire over 
45 years ago;  ff3 2-4 fires recorded since 1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed burn or 15 years post 
bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI breached >22 years ago  ff5 2-3 fires within the last 19 years with TFI 
breached within last 19 years.  
Avian community responses  
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Foraging guild responses  
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A3  Graphing outputs: individual species’ responses to time since fire and 
fire frequency. 

Generalized linear mixed models.  Heathy Dry Forest abundance graphs for birds identified as 
‘common’ (contributing to approximately 80% of assemblage patterns) and ‘moderately common’ 
(remaining birds in the community that were observed on >10% of all sites).  Graphs are 
presented using categorical vegetation age of fire frequency categories.  Full model design 
carried out in the R Statistical environment (R Development Core Team, 2008).  Model selection 
based on random effect structure (RE) and dispersion parameters (resulting in some species 
presented as abundance and some as occurrence) and ranked using Akaike’s Information Criteria 
(AICc).  Categories with no value indicate an absence of the species in that category. A 
confidence interval on a binomial distribution from zero to one indicates that the species was 
found on every site in that category. 

TSF categories: tsf1 0-6 months, tsf2 6 months – 2.5 years, tsf3 2.5 years to 10 years, tsf4 10 to 
35 years, tsf5 35+ years, combined with last burn not recorded. 
Fire frequency categories: ff1 unburnt or burnt over 34 years ago; ff2 one burn within last 20 
years, or, one fire within last 20 years plus one fire over 45 years ago;  ff3 2-4 fires recorded since 
1939 and not breaching tolerable fire interval (TFI) of 10 years post prescribed burn or 15 years 
post bushfire; ff4  0-2 fires in the last 19 years + 1-3 fires > 20 years ago with TFI breached >22 
years ago  ff5 2-3 fires within the last 19 years with TFI breached within last 19 years. 

Spotted Quail-thrush for fire frequency and Golden Whistler for both TSF, were both too low in 
number to model. 

 ‘Bark’ foraging guild.  
  RE - Varied Sitella tsf: mosaic/site ff: mosaic; White-throated Treecreeper tsf and ff:  mosaic/site  
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‘Canopy’ foraging guild 
RE – Grey Fantail tsf and ff: mosaic/site; Rufous Whistler tsf and ff: mosaic; Spotted Pardalote tsf: 
mosaic/site ff: mosaic; Striated Pardalote tsf and ff: mosaic; Striated Thornbill tsf: mosaic/site, ff: mosaic   
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‘Carnivore’ foraging guild 

RE - Australian Raven tsf and ff: mosaic; Grey Currawong, Grey Shrikethrush and Laughing Kookaburra tsf 
and ff: mosaic/site; Pied Currawong tsf and ff: mosaic 
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‘Damp ground’ foraging guild 
RE – Eastern Yellow Robin, White-browed Scrubwren tsf and ff: mosaic 
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 ‘Nectarivore’ foraging guild 
RE – Brown- headed Honeyeater, Eastern Spinebill, Red Wattlebird, White-naped Honeyeater and Yellow-
faced Honeyeater tsf and ff: mosaic; White-eared Honeyeater tsf: mosaic/site ff: mosaic 
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‘Open ground’ foraging guild 
RE – Australian Magpie tsf and ff: mosaic/site 

 

‘Open trees’ foraging guild 
RE – Buff-rumped Thornbill and White-winged Chough tsf: mosaic/site ff: mosaic; Pallid Cuckoo and Superb 
Fairywren tsf and ff: mosaic; Scarlet Robin tsf and ff: mosaic/site; Spotted Quail-thrush tsf: mosaic  
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‘Seeds on ground’ foraging guild 
RE – Common Bronzewing and Sulphur-crested Cockatoo tsf and ff: mosaic  
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‘Seeds on trees’ foraging guild 
RE – Crimson Rosella tsf: mosaic/site ff: mosaic 

 

‘Tall shrubs’ foraging guild 
RE – Brown Thornbill tsf: mosaic ff: mosaic/site; Fan-tailed Cuckoo tsf and ff: mosaic; Golden Whistler ff: 
mosaic 
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