
Investigating the e�ect of Soil Moisture,
Temperature and Precipitation Extremes on

Fire Risk and Intensity in Australia

Alexander William Holmes

MSc Atmospheric and Climate Sciences ETH Zürich, Switzerland
BSc Monash University, Australia
alexander.holmes@monash.edu

A thesis submitted for the degree of Doctor of Philosophy
at Monash University in 2018

3291: Doctor of Philosophy (Faculty of Engineering)

February 16, 2018





Copyright Notice

© Alex Holmes (2018).

Under the Copyright Act 1968, this thesis must be used only under the normal condi-
tions of scholarly fair dealing. In particular no results or conclusions should be extracted
from it, nor should it be copied or closely paraphrased in whole or in part without the
written consent of the author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

I, Alex Holmes, certify that I have made all reasonable e�orts to secure copyright per-
missions for third-party content included in this thesis and have not knowingly added
copyright content to my work without the owner’s permission.

iii



iv



Abstract

Fire risk and �re intensity are increasingly important in semi-arid regions such as Aus-
tralia where extreme conditions are expected to increase in both intensity and frequency
under the in�uence of climate change. Conditions such as extreme temperature or pro-
longed precipitation de�cits provide ample conditions for forest �res. As evident by the
recent devastating �res in California in 2017 and infamously the ‘Black Saturday’ �res
in Victoria in 2009, forest �res can have a devastating e�ect on land, property, livestock
and even human life. Therefore, this thesis investigates the e�ect soil moisture, tempera-
ture, and precipitation de�cits have on �re risk and �re intensity in Australia. At present
there are no studies that combine high resolution remotely sensed soil moisture data,
precipitation-driven drought indices, temperature extremes, and Fire Radiative Power
(FRP) to produce �re risk. Also, there are many �re danger indices used to quantify
the likelihood of a �re, with the most common, the McArthur Forest Fire Danger Index
(FFDI), used in Australia. Most of these indices, and in particular the FFDI, are produced
using spatially low resolution data and only include soil moisture in the form of the
Keetch-Byram Drought Index (KBDI). This is an oversight, as soil moisture de�cits are
not only linked to vegetation moisture de�cits but also to temperature extremes which
in turn a�ect the resultant FFDI.

As the representation of soil moisture within the current FFDI uses an out-dated em-
pirically derived precipitation-driven drought index (the KBDI), this thesis initially as-
sesses several of the most commonly used precipitation-based moisture indices, as well
as the remotely sensed ESA CCI soil moisture, and AWAP’s modelled surface soil mois-
ture products. This thesis builds on previous comparisons of precipitation-driven mois-
ture indices by comparing them against ground observations and also against remotely
sensed products, providing an overview of the spatial variation across Australia between
2000 to 2015 (in situ), and 1979 to 2015 (ESA CCI). Generally, API (Antecedent Precipi-
tation Index) and MSDI (Mount’s Soil Dryness Index) showed the largest correlation to
in situ surface soil moisture (both normalised and the anomalies of the normalised data)
with the highest correlations observed in the OzNet network, compared to the OzFlux
and CosmOz network sites. Beyond this, API and MSDI tend to resemble the gridded
reference soil moisture the closest with little bias towards either wetter or drier condi-
tions, whereas KBDI and 14-day SPI show a large wet bias.

Furthermore, as precipitation and temperature are two of the key variables used in deter-
mining �re risk, their relationship with each other and their feedbacks are of particular
relevance. To this extent, the in�uence of the location of the‘Transitional Zone’ on the
Tx90-SM (Tx90; Hot-Days, SM; Soil Moisture) relationship is investigated in this thesis.
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The transitional zone paradigm explains the in�uence of soil moisture on the overlying
energy partitioning between sensible and latent heat in the context of evapotranspira-
tion drivers and vegetation conditioning. Not only does this thesis show that, contrary
to previous studies, the semi-arid region is moisture limited, indicating that it is largely
not within the transitional zone, but also that, large areas of the temperate and savanna
regimes enter the transitional zone resulting in a larger correlation between changes in
moisture and Tx90 in these regions. This suggests that Australia exhibits di�ering con-
ditions in relation to the Tx90-SM relationship than other similar climate regions.

The spatial variation in the strength of this relationship is a key factor in the magnitude
of the resultant FFDI and more so the FRP. In particular, the most intense �res appear to
occur in the temperate/transitional regime, speci�cally, in alpine south-east Australia,
and are generally characterised as having very few �res per year compared to the north
of the country. Typically, there is a larger number of �res occurring in the north of Aus-
tralia but on average they have a far lower FFDI and FRP. This suggests that the current
use of the FFDI should be adjusted to take into account the spatial di�erences in what
constitutes �re risk in Australia. Furthermore, both MSDI and API best correspond to
observed changes in the relationship between soil moisture and FRP with a clear loga-
rithmic increase in FRP with decreasing moisture. When substituting the API (and other
indices) in place of the KBDI in the drought component of the FFDI there is little di�er-
ence in the resultant FFDI further suggesting that API is a more parsimonious measure
of soil moisture.

Finally, API is used as the sole input into the drought component in the FFDI to assesses
the change in FFDI derived from past and future projections of selected CMIP5 models
for Australia between 1979 and 2100. Overall, FFDI is projected to increase substantially
throughout the twenty-�rst century, particularly for the highest radiative forcing path-
way (RCP 8.5). However, these changes are expected to vary greatly across Australia
and seasonally, in line with observations from current trends in FFDI. By the end of the
century the change in cumulative annual FFDI is estimated to increase by about 20% and
30% for medium (RCP 4.5) and high climate pathways, respectively (estimates of FFDI
derived from monthly means). This underlines the importance of the FFDI and the use
of soil moisture as a prognostic tool for estimating �re risk in Australia.

The research presented in this thesis contributes to a better understanding of the land-
climate processes leading to forest �res and their intensity and also their likely change
due to the e�ect of climate change. By strengthening this understanding, better preven-
tion and mitigation of events and better allocation of water resources in the Australian
region can be achieved.
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CHAPTER1
Introduction

Overview With the likelihood of extreme events such as forest �res expected to
increase due to climate change, it is critical to better understand the mechanisms promot-
ing conditions leading to forest �res. These conditions, namely soil moisture, tempera-
ture, relative humidity, and wind speed are yet to be studied in relation to �re intensity;
therefore an opportunity exists to not only investigate these conditions with respect to
�re danger in Australia, but also improve on the resources for accurately calculating the
McArthur Forest Fire danger Index (FFDI). In this thesis, in order to facilitate this, an
investigation of the use and accuracy of various moisture indices for characterizing soil
moisture is necessary and is the focus of the initial research task. Following this, since
the partitioning between sensible and latent heating at the surface governs the strength
of the relationship between soil moisture de�cits and extreme temperature, the region
in which this is expected to be maximised is analysed. This leads to a better understand-
ing of the spatial variation between di�erences in FFDI, �re intensity (Fire Radiative
Power; FRP) and relevant conditions, allowing for further research into improving the
classi�cation of �re danger through the FFDI. It is expected that in doing so a simpler
formulation of the drought factor (a component within the FFDI) can be developed, fur-
ther increasing our skill in forecasting �re danger in �re prone regions such as Australia.
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Motivation

1.1 Motivation

With acknowledgement that the climate system is changing due to anthropogenic forc-
ing (IPCC, 2013a), di�erences in the mean state of the climate can have a drastic e�ect
on the frequency and duration of extreme events. Due to this, the climate system has
gained increasing attention during the last several decades, with the study of extreme
events becoming the focus of research. Extreme events such as droughts and heat waves
are regular occurrences on a large scale in semi-arid regions such as Australia, and are
predicted to further increase in their frequency and severity (Cowan et al., 2014) in a
warming climate. Conditions such as extreme temperature or prolonged precipitation
de�cits lead to these events and provide ample precursor conditions for catastrophic
events such as forest �res. Forest �res can have a devastating e�ect on land, property,
livestock, and even human life (Teague et al., 2010).

The ‘Black Saturday’ �res in Victoria in 2009 are a prime example of the extent of de-
struction such �res can cause and are generally considered among the worst in Aus-
tralian recorded history (Teague et al., 2010). Teague et al. (2010) reported that these
�res resulted in 173 deaths along with over 400 injuries and in excess of 11,800 livestock
lost, with the physical damage of these �res including damage to over 5,000 homes and
structures with a total of 2029 homes destroyed. Beyond this, over 60, 000 tonnes of
produce and about 70, 000 ha of crops were destroyed during the �res. Overall, the �res
burned an area of 4, 500 km2 (roughly 2% of the total size of Victoria ) across 13 locations
with temperatures in excess of 1200 C◦. All of this culminated in the total cost of dam-
ages in excess of $4.4 billion with $645 million being attributed to the loss of life alone.
However, the longer lasting e�ects of the �res are not considered in these estimates
(Teague et al., 2010). Not only do forest �res occur on a large scale in Australia, but �re
events are of signi�cance worldwide, with devastating �res in Bolivia in 2010, Greece
in 2012, Russia in 2010 and 2015, and more recently in California and Portugal in 2017,
in which 44 and 64 people were killed, respectively. Furthermore, extreme conditions
and weather events contribute to a raft of far-reaching socio-economic issues, including
stress on industry, transportation systems, food, and energy production as well as polit-
ical and social issues that are particularly vulnerable to shifts in the climate system as a
whole.

Droughts in the form of soil moisture de�cits in�uence multi-scale feedbacks (Miralles et
al., 2008; Seneviratne et al., 2010; Miralles et al., 2012) as well as land-atmosphere inter-
actions (Koster et al., 2003; Koster et al., 2014; Koster et al., 2016; Schubert et al., 2016b;
Schubert et al., 2016a). It is therefore essential to understand exactly how soil mois-
ture varies both spatially and temporally in order to accurately forecast and improve its
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predictions in order to better mitigate risks (Draper et al., 2009). The importance of soil
moisture on the climate system and as an environmental variable has recently been high-
lighted by its inclusion into the GCOS (Global Observing System for Climate) Essential
Climate Variable (ESV) index under land interactions (Seneviratne et al., 2013). Not only
is soil moisture an important variable in land dynamics such as subsurface �ow, in�l-
tration, and groundwater recharge, it in�uences photosynthesis and evapotranspiration
through vegetation moisture and is also a key component in land-atmosphere feedbacks
associated with the hydrological cycle at both weather and climate time-scales (Koster
et al., 2003; Koster et al., 2014; Koster et al., 2016; Liu et al., 2012). Soil moisture a�ects
the energy partitioning between sensible and latent heat from the land into the atmo-
sphere potentially a�ecting local temperature and precipitation extremes (Seneviratne
et al., 2010; Fischer et al., 2007; Hirschi et al., 2010). Similar to extreme events, changes
in soil moisture can have a signi�cant socio-economic e�ect both directly through water
resource management, agricultural productivity, forest and ecosystem health, as well as
indirectly through exacerbated temperature extremes and their associated risks such as
forest �res (Hirschi et al., 2014; Han et al., 2014; Herold et al., 2016).

Soil moisture is currently used in land surface model assimilation (Koster et al., 2009; van
Dijk et al., 2014) including agricultural drought models (e.g. Han et al., 2014), numerical
weather forecasting (e.g. Draper et al., 2009; Dharssi et al., 2011), �ood forecasting (e.g.
Wanders et al., 2014), forest �re danger forecasting (represented by a drought compo-
nent, e.g. Liu et al., 2003; Finkele et al., 2006; Bartsch et al., 2009; Chaparro et al., 2016),
and long-term hydrological trends and drought monitoring and evaluation (e.g. Heim,
2002; Teuling et al., 2006; Hubbard et al., 2007; van Dijk et al., 2013; Perkins et al., 2015).
Soil moisture is also used extensively in the assessment of hydrological feedbacks in
climate modelling (Dirmeyer et al., 2016; Schubert et al., 2016b) such as in the CMIP5
projections (e.g. Seneviratne et al., 2013).

Forest �res are often associated with moisture de�cits, extreme temperature and low
fuel moisture, culminating in exacerbated �re danger (Pereira et al., 2005; Chaparro et
al., 2016). During the Black Saturday �res, the maximum temperature was in excess of
48 C◦ more than 20 C◦above the February long-term average, relative humidity was as
low as 9 %, and wind gusts were in excess of 80 kmh−1 resulting in record values for
FFDI. The royal commission charged with investigating the conditions and e�ects of the
�res concluded that the current FFDI was not suitable for extreme �re events. Based
on their recommendations, there was a revision of the FFDI in which a new category
(‘catastrophic’) was introduced, representing values in excess of the previous maximum
(Teague et al., 2010). Despite that the FFDI is said to be directly related to the chance of
a �re igniting, its rate of spread, and the di�culty of suppression(Nobel et al., 1980), in
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Statement of Problem

its current form the FFDI does not quantify a relationship to either the intensity of a �re
nor soil moisture directly. Fire Radiative Power (FRP) can be a useful tool to quantify
the impact and intensity of �res and it is directly a�ected by temperature, moisture and
vegetation conditions (Kaufman et al., 1998). The Black Saturday �res burned with a to-
tal intensity (FRP) of 70, 000− 80, 000 MW (Xu et al., 2017), compared to a controllable
intensity of about 3, 500−4, 000MW (Teague et al., 2010), and compared to the median
FRP of 42 MW in Australian tropical savanna (for a single �re; Oliveira et al., 2015, or
≈ 2, 000 MW for a comparable sized �re), further highlighting the importance of FRP
when assessing the impact and intensity of a �re.

Not only does the risk of �re increase with weather-exacerbated changes in the condi-
tions leading to forest �res, but also changes to the climate system as a whole (Hennessy
et al., 2005). As the Earth’s climate changes due to anthropogenic forcing (Charlson et
al., 1992), there is expected to be an increase in temperature extremes, de�cits in precipi-
tation (although, it is expected there to be an increase in global mean precipitation), and
generally changes to the parameters associated with high �re risk, each of which are
projected to change signi�cantly in the future (Sherwood et al., 2010; Dai, 2013; Wang
et al., 2013; Gibson et al., 2017b). More so, it has been identi�ed in both observations
and model projections, that spatial patterns and the extent of changes in temperature
extremes and precipitation di�er globally and on a regional scale (Donat et al., 2017).
Speci�cally, Seneviratne et al. (2016) used ensemble means of CMIP5 projections to show
that changes in regional temperature extremes can di�er signi�cantly from the global
mean trend. Partly, these regional increases in hot extremes have been identi�ed as a re-
sult of the land-atmosphere feedbacks which amplify aridity over land (Berg et al., 2016).
This is particularly the case with feedbacks of projected soil moisture decreases on land
surface temperature, relative humidity, and precipitation (Berg et al., 2016). This has
also been identi�ed by Seneviratne et al. (2013) using GLACE-CMIP5 projections. In this
work, projected soil moisture changes were found to substantially exacerbate tempera-
ture extremes in several regions in both boreal and austral summer (Seneviratne et al.,
2013). These regional increases in hot extremes, relative humidity, precipitation de�cits
all have a signi�cant e�ect on �re risk.

1.2 Statement of Problem

The McArthur FFDI is used operationally to quantify �re danger in Australia, but the
drought component of this index is often criticised for its lack of dynamic range as it is
empirically derived using 50-year old assumptions. The drought factor within the FFDI
also does not necessarily accurately represent changes in soil moisture across the vari-

5



ous climate regimes of Australia. Beyond this, the moisture index used in the drought
factor is not universal, with both the Keetch-Byram Drought Index (KBDI) and Mount’s
Soil Dryness Index (MSDI) being used depending on which state the FFDI is formu-
lated in. Furthermore, particularly with KBDI, this calculation can be computationally
complex, whereas in climates with similar conditions, other moisture indices such as:
the Antecedent Precipitation Index (API), the Rainfall Anomaly Index (RAI), the Stan-
dardized Precipitation Index (SPI), and the Standardized Precipitation Evaporative Index
(SPEI), have been proven to more accurately represent soil moisture and are far simpler
to calculate (Van Rooy, 1965; Oladipo, 1985; Heim, 2002; Liu et al., 2010; Vicente-Serrano
et al., 2010). Lastly, unlike similar extreme indices, FFDI does not include an indication
of scale or intensity. In particular, the FFDI and soil moisture have not been previously
investigated in relation to the rate of energy consumption (quanti�ed through FRP), a
key indicator to the intensity of a �re.

1.3 Research Question and Aims

This research investigates the e�ect of conditions leading to forest �res and their e�ect
on �re intensity at various spatial scales. The intention is to quantify the strength of
coupling between soil moisture and high-temperature anomalies leading to forest �re
vulnerability and in doing so, investigate how these vary with the forest �re danger in-
dices (FFDI) across Australia. By including high resolution remotely sensed soil moisture
from the ESA CCI product (see section 3.3.2 ) and indices of soil moisture (see sections
2.2 and 3.4), the aim is to increase the accuracy and scalability of the index and risk
analysis. By strengthening the understanding of conditions leading to severe events,
improved prevention and mitigation strategies and a better allocation of resources in
the Australian region can be achieved.

Speci�cally, the aims of this research can be stated:

1. How accurately do commonly used indices for soil moisture used in �re-related
studies perform against each other and how do they vary across Australia. Is this
related to the location of the ‘Transitional Zone’ and energy partitioning in Aus-
tralia? Are Tx90 days the only days associated with forest �res?

2. Can remotely sensed soil moisture data be used to improve the current approaches
to predict �re risk and danger? What is the spatial variability of soil moisture,
moisture indices, temperature and FRP data across the climate regimes of Aus-
tralia? How is this impact to the operationally used FFDI in Australia? Can the
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Structure of Thesis

drought factor be simpli�ed using di�erent moisture indices, whilst maintaining
accuracy?

3. Using the results from the above research goals, how does the risk of forest �res
change in response to climate change and also how has it changed in the past?

1.4 Structure of Thesis

Including the introduction chapter, this thesis is comprised of a total of eight chapters.
The main body of analysis is presented in Chapters 4-7 with each of these introduced
with a brief overview of the chapter and concluded with a bridging summary of �ndings.
As �eld sampling and measurements of burn severity and burn extent are essential to
accurately assess remotely sensed products of �re activity an independent analysis on
the minimum sampling rate required to accurately measure �re severity from ground
sampling are presented in Appendix A. Furthermore, any additional information and
plots not directly discussed throughout the thesis are presented in B.

The remaining seven chapters are outlined as follows:

Chapter 2 Literature Review

An overview of the background and current state of research for this thesis is pre-
sented in this chapter. More speci�cally, the mechanisms and processes behind
the relationship between soil moisture de�cits and heat extremes are discussed
in detail, including the link between the terrestrial water and energy balances. A
thorough overview of the most commonly used soil moisture and drought indices
and their strengths, weaknesses, and applications is discussed as well as the com-
mon practices and methods for the retrieval and quanti�cation of �re intensity.
Finally, an overview of the current research in relation to the trends in FFDI, both
historically and projected through to 2100 is presented in this chapter. A review
of the di�erences in the key variables used to calculate the FFDI between various
radiative forcing, and climate pathways due to climate change (produced from
CMIP5 model projections), is also conducted.

Chapter 3 Methods

Any methods or data common to the main body of analysis are outlined here,
particularly, the moisture indices used, the retrieval methods of in situ, modelled
or remotely sensed measurements, as well as the main statistical methods used
throughout the thesis. Any methods or data speci�c to a certain chapter are dis-
cussed therein.
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Chapter 4 Comparison of Soil Moisture Proxies Across Australia

This chapter assesses and quanti�es the di�erences in the moisture indices and a
reference soil moisture (in situ and gridded remotely sensed) across various climate
regimes in Australia.

Chapter 5 Variability of Soil Moisture Proxies and Hot Days

The di�erence in the strength of coupling between soil moisture and the mois-
ture indices are then placed in the context of the identi�cation and location of the
transitional zone, as discussed in the literature review. Furthermore, this chapter
investigates the relationship between these various products and temperature ex-
tremes in the form of Tx90, both when in�uenced by ENSO conditions and at all
times during the study period.

Chapter 6 Improving Fire Risk Estimation by Investigating Fire Intensity, and
Moisture and Temperature Extremes

This chapter introduces both �re danger (FFDI) and �re intensity (FRP) and how
each is a�ected by moisture de�cits and temperature extremes. This chapter also
investigates the merit of simplifying the current FFDI replacing the drought factor
component with each of the moisture indices.

Chapter 7 FFDI in a Changing Climate

This �nal analysis chapter investigates the historical and future trends of FFDI
using CMIP5 modelled data output under a moderate and high radiative climate
forcing.

Chapter 8 Conclusions

The key conclusions and �ndings for each chapter are outlined and summarised in
this chapter, as well as the potential opportunity for future work developed from
this thesis.
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CHAPTER2
Review of Literature

Overview In this literature review, the linking mechanisms between soil mois-
ture states and temperature extremes will be discussed, along with their potential use
in producing a high-resolution �re danger index throughout the twentieth and twenty-
�rst centuries. This will be compared to current methods for producing �re risk indices
and the potential advantages gained by including soil moisture will be discussed. A re-
view of various soil moisture indices will be conducted, highlighting their strength and
weaknesses as well as how they compare with the KBDI used in the McArthur Forest
Fire Danger Index (FFDI). Furthermore, the methods for calculating high-resolution in-
dices of soil moisture as well as the methods to determine �re risk and its mapping will
also be explored. Following this, Fire Radiative Power (FRP) data retrieval methods will
be investigated and whether FRP and �re occurrence should be considered in relation
to FFDI to simplify its formulation for forecasting. Finally, the main concepts and gaps
in knowledge in this �eld will be critically reviewed, providing a sound justi�cation for
this research.
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Background

2.1 Background

Drought and heat wave events are regular occurrences on a large scale in semi-arid
regions of the world, such as Australia, and are predicted to further increase in their fre-
quency and severity (Cowan et al., 2014). Much of Australia has been heavily a�ected by
drought conditions in recent years (Perkins-Kirkpatrick et al., 2016) and as such, a large
stress has been placed on the allocation of water resources. Understanding the changes
in the hydrological conditions and water balance in a region is essential for understand-
ing the distribution of droughts and any consequent forcing of extreme temperatures.
This leads to more accurate predictive skills and forecasting of extreme events for an
improvement in the ability to plan mitigation strategies.

High maximum temperatures and low moisture content in the vegetation provide favour-
able conditions leading to �res, which is well documented in numerous studies (Barbosa
et al., 1999; Ainuddin et al., 2008; Bartsch et al., 2009; Dolling et al., 2005; Gellie et al.,
2010; Kala et al., 2015; Turco et al., 2017; Urbieta et al., 2015). As drought severity (as
expressed as PDSI; Palmer Drought Severity Index) is a function of temperature and
precipitation, Balling Jr et al. (1992) found that when winter precipitation decreased and
summer mean temperatures increased, soil moisture in the region decreased substan-
tially. This was signi�cantly related to the increased �re activity over the period inves-
tigated and increases/decreases in soil moisture correlated well to decreases/increases
in �re activity. Balling Jr et al. (1992) found that in the Yellowstone national park over
one-third of the temporal variance in burnt area is explained by drought severity. This
was also found in a study by Westerling et al. (2006) where a large increase in �re dura-
tion and frequency in the 1980’s was attributed to a warmer spring and summer period
with a substantial decrease in winter precipitation. These conditions led to a decrease
in soil moisture and vegetation moisture increasing the availability of dry fuel as well as
a�ecting associated land-climate interactions.

Therefore, understanding the underlying physics of the water and energy balance are
essential for better understanding these land-climate interactions and their e�ect on the
conditions leading to forest �res. More particularly, the exchange of water between
the atmosphere and the land surface as well as the energy balance are illustrated in
Figure 2.1a. The amount of water stored in reservoirs (in various forms in terrestrial,
atmosphere, ocean, and lake reservoir environments) varies greatly, therefore, changes
in state between reservoirs will have a large e�ect on the energy balance, particularly
through evapotranspiration (E or the latent heat �ux λE where λ is the latent heat of
vaporisation). The terrestrial water balance for the surface soil layer including vegeta-
tion (Figure 2.1a, left) can be expressed as:
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dS

dt
= P − E −Rs −Rg (2.1)

where the amount of water entering a given soil layer through precipitation (P) is bal-
anced by the evapotranspiration (E), the surface runo� (Rs), and the drainage (Rg). The
rate of change of water is denoted by dS/dt and includes changes to the soil moisture,
surface water, snow, ice, and groundwater. The evapotranspiration term includes evap-
oration from bare soil, surface water or from water intercepted and stored in the canopy,
as well as through plants’ transpiration, and snow/ice sublimation. The terrestrial water

(a)

(b)

Figure 2.1: Figure and caption taken from (Seneviratne et al., 2010), pages 129 and 130. (a) Schematic
of the land water balance (left) and land energy balance (right) for a given surface soil layer. dS/dt refers
to the change in water content within the layer (soil moisture, surface water, snow; depending on the
depth of the layer, this may include ground water changes), while dH/dt refers to the change of energy
within the same layer. SWnet refers to the net shortwave radiation (SWinSWout) and LWnet refers to
the net longwave radiation (LWinLWout). Note that H2O and CO2refer to atmospheric water vapour
and atmospheric CO2 and their role as greenhouse gases. (b) De�nition of soil moisture regimes and
corresponding evapotranspiration regimes. EF denotes the evaporative fraction, andEFmax its maximal
value. θWILT is the wilting point and θCRIT is the critical saturation point.
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Background

balance is coupled with the energy balance through the evapotranspiration term and
given as:

dH

dt
= Rnet − λE − SH −G (2.2)

Here, the evaporation of water is related to the exchange of energy, expressed as the
latent heat �ux (λE where λ is the latent heat of vaporization or sublimation). The
amount of energy entering the system via net radiation Rnet is balanced by the change
in heat stored in the system (dH/dt) and is the sum of incoming and outgoing radiation
components, both in the form of longwave-infrared (LWIR) radiation and the shortwave
near-infrared (SW-NIR) radiation. The transfer of heat directly into the atmosphere via
changes in temperature is called the sensible heat �ux (SH), otherwise, heating is a result
of an associated phase change in water and is de�ned as the latent heat �ux (LH). The
transfer of heat from the soil layers to the adjacent atmosphere is de�ned as the ground
heat �ux (G) (Seneviratne et al., 2010).

As changes in either of the energy or water balance are interrelated via evapotranspi-
ration through their calculation, the amount of evapotranspiration in the system is not
only constrained by the amount of water available (through soil moisture), but also by
the amount of available energy which governs temperature. Due to this, changes in the
amount of the evapotranspiration has been investigated in the form of the relationship
between soil moisture and Hot-Days (the number of days exceeding the 90th percentile
of the climatology, HD; Fischer et al., 2007; Hirschi et al., 2010). More speci�cally, the
SM-HD relationship is postulated to be the result of the e�ect of soil moisture on the
surface energy balance (land-climate coupling linking soil moisture and surface/air tem-
perature). That is that the soil moisture of a region determines the partitioning between
sensible and latent heating resulting in direct changes to the temperature.

Regional studies on changes in the water balance (through the terrestrial water storage
of a basin) typically focus on the in�ux and out�ow of water in this system (Potter et al.,
2009). However, the variability in terrestrial water balance and the feedback with climate
has also been investigated by Leblanc et al. (2009). They determined that the response
of Total Water Storage (TWS) and soil moisture was due to changes in precipitation and
temperature in the Murray-Darling Basin (South-east Australia). Furthermore, through
investigating the relationship between actual and potential evapotranspiration, Budyko
(1974) showed that the mean annual actual evapotranspiration of a basin is controlled by
its mean annual precipitation and potential evapotranspiration. Based on a conceptual
model of the controls on moisture limited and radiation limited basins (for large-scale
basins with an area greater than 1000 km2; Budyko, 1974), Hirschi et al. (2010) and Fis-
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cher et al. (2007) indicated that a soil moisture de�cit could also precede above-average
temperatures in a region.

The mechanism through which this occurs is due to the interaction between the wa-
ter and energy balances, as sensible heat dominating latent heat will cause a localised
temperature change as a result of the direct heating above the surface. However, latent
heat dominating sensible heat will result in a larger amount of evapotranspiration and a
decrease in the near-surface temperature (Seneviratne et al., 2010). Evapotranspiration
in a region can be either moisture or radiation limited. In the case of moisture limitation,
the lack of available water prevents evapotranspiration. Conversely, radiation limitation
occurs where moisture is abundantly available while the amount of evapotranspiration
is limited by the incoming radiation (Teuling et al., 2006). When soil moisture is be-
low the wilting point (θ WILT) then evapotranspiration will be at a minimum (adirect
relationship between temperature and radiation resulting in only sensible heating). Like-
wise, if the surface is saturated (θ CRIT) then evapotranspiration will be at a maximum
(latent heating is at a maximum) and only dependent on available energy. However, a
region that is normally soil moisture limited between the wilting point and critical level
is known as a ‘Transitional Zone’ (Seneviratne et al., 2010). A schematic of the soil mois-
ture regimes and corresponding evapotranspiration regimes is presented in Figure 2.1b.
Transitional zones lie between wet and dry climates or semi-arid regions, such as large
parts of Australia.

2.2 Soil Moisture / Drought Indices

The impact and intensity of droughts can be assessed using various de�nitions (Heim,
2002). The American Meteorological Society (AMS) groups drought de�nitions into four
main categories: meteorological or climatological, agricultural, hydrological, and socio-
economical, each with di�erent metrics as well as onset duration (Heim, 2002). For ex-
ample, a socio-economical drought will usually be associated with a reduction in the
supply of economic goods due to limited water resources. In this case, the onset dura-
tion will be determined by the length of time for water stress to occur in agricultural
commodities, as a direct result of drought. Agricultural droughts refer to crop failure as
a result of evapotranspiration far exceeding the available precipitation and consequently
soil moisture in the root zone. This can develop over a relatively short period of time
(weeks to months) as a result of a prolonged meteorological drought. Meteorological
droughts are generally de�ned as a reduction or lack of precipitation compared to aver-
age conditions over a time frame and can have a relatively short onset period (days to
weeks), depending on temperature, soil conditions, and the local climatology. Finally,
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hydrological droughts occur when the soil surface and subsurface water stores are af-
fected by meteorological droughts causing a lack of water supply to not only the root
zone but to streams, groundwater, reservoirs, and lakes. These occur for a far longer
period of time (months to years) and can persist long after a meteorological drought has
ended.

As there are several de�nitions for droughts, each with varying duration, cause and
prevailing conditions, particularly referring to water resources (through soil moisture,
groundwater, snowpack, river discharges, and reservoir storages), there are many in-
dices that de�ne the intensity, severity and spatial extent of droughts (such as: API, PDSI,
RAI, KBDI, MSDI, SWSI, SPI, VCI, SMI, and SPEI to name a few; and are de�ned below).
As a consequence, the moisture memory may vary substantially between indices. Hence,
it is commonly accepted that droughts are multiscalar phenomena (Vicente-Serrano et
al., 2010). As such, each index will have a di�erent relationship to precipitation, and soil
moisture and have a di�erent physical application as well as strengths and weaknesses
(detailed descriptions of the indices cited throughout this thesis is outlined in Table 2.1,
including their formulation, the main variables required, and applications).

Early drought indices were based on the meteorological drought de�nition indicating a
de�cit in precipitation over a given time period (Tannehill, 1947). These typically relied
on determining the length of period that precipitation was below a certain threshold
in precipitation (Munger, 1916; Blumenstock, 1947) and could reasonably depict short-
term droughts. Originally produced to estimate soil moisture for �ood forecasting, the
Antecedent Precipitation Index (API) was the �rst drought index that de�ned a moisture
depletion rate reducing from the �eld capacity (Kohler et al., 1951). Empirically derived,
the API is computed at a daily scale multiplying the index from the previous day by the
depletion factor (commonly 0.9) and adding the current daily precipitation. Any snow-
fall is included on the day it melted. It is often used in various watershed analysis studies
(Liu et al., 2011). However, the depletion rate has a considerably large spatial variation
due to several factors including soil type, soil density, vegetation, exposure, hill slope
etc. Although recently re-de�ned to address this by introducing the daily maximum
temperature into the depletion rate (Crow et al., 2005; Crow et al., 2012; Holgate et al.,
2016; Kumar et al., 2017), the API was surpassed by indices that included a water balance
model (Heim, 2002).

Following the original formulation of the API, the �rst widely used index, the Palmer
Drought Severity Index (PDSI; Palmer, 1965), de�ned relative dryness based on tem-
perature and precipitation data. Standardised between −10 (dry) and +10 (wet) it has
been shown to successfully re�ect characteristics in long-term drought through using a
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physical water balance model comprising of temperature, precipitation, moisture sup-
ply, runo�, and evaporation demand at the surface level (Dai et al., 1997; Dai, 2011b;
Dai, 2011a; Trenberth et al., 2013; Mishra et al., 2010; Edwards, 1997; Vicente-Serrano
et al., 2010; Sims et al., 2002). The calculation procedure was based on a set of three
formulas and made several assumptions: i) that the top soil layer has a �eld capacity
of 2.54 cm, ii) that moisture does not �ltrate to the ‘root zone’ layer until the top layer
becomes saturated, iii) that runo� only occurs once all layers are saturated, and iv) that
any precipitation exceeding the evapotranspiration and soil moisture demand will be lost
through runo� (Vicente-Serrano et al., 2010). Due to these reasons, the spatial compa-
rability of PDSI is often questioned and requires calibration and standardisation (McKee
et al., 1993). Furthermore, the main issue with the PDSI relates to its �xed temporal scale
(between 9 and 12 months) and its lengthy antecedent behaviour in which the PDSI can
be a�ected by previous years conditions (Guttman, 1998).

The Rainfall Anomaly Index (RAI; Van Rooy, 1965) aimed to improve spatial comparabil-
ity by introducing climatology into its formulation. Similar to the API in its simplicity,
the RAI is computed by determining the di�erence between the average precipitation
over a given period and the mean of the ten highest and ten lowest records from the
climatology of a location. Oladipo (1985) found that there were only negligible di�er-
ences between RAI and the complicated PDSI, however, a complete time-series of data
for any speci�c location is required. Often several indices are combined to reduce the
de�ciencies of a speci�c index. For example as snowpack, reservoir storage, and stream-
�ow dynamics had not previously been incorporated into the PDSI, the Surface Water
Supply Index (SWSI; Shafer et al., 1982) was developed to complement the PDSI. While
both indices were empirically derived, they have been used extensively to assess the
surface water supply of river basins (Doesken et al., 1991). However, as the SWSI is also
calculated per basin, issues in spatial variability and comparability are observed.

Initially developed as an alternative to the PDSI for Colorado, the Standardized Precip-
itation Index (SPI; McKee et al., 1993) was produced to characterise drought and �ood
severity using solely precipitation data. Guttman (1999) found that the spectral charac-
teristics of the PDSI indicated large spatial variability (as previously mentioned) whilst
SPI was spatially invariant, meaning that it is comparable between locations. Guttman
(1999) also found that PDSI was a�ected by previous values such that they caused a
’memory’ as opposed to SPI with a moving average. Hence, the SPI can be used to di-
rectly compare moisture of both spatially di�erent climates and regions with large tem-
poral variation. Furthermore, the di�erent time-scales for which SPI can be computed at
(typically 1-48 months) refer to the various de�nitions of drought. E.g. the shorter scales
(1-3 months) indicate agricultural and meteorological droughts and longer (six plus) in-
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dicate hydrological drought (Hirschi et al., 2010). 3-month SPI has been widely used to
investigate the association between soil moisture and temperature extremes in Europe
(Hirschi et al., 2010) and globally (Mueller et al., 2012). Due to its ease of calculation, SPI
is increasingly used for drought-related studies (Bonaccorso et al., 2003; Livada et al.,
2006; Naresh Kumar et al., 2009; Mohammad Amin Asadi et al., 2015).

As the SPI is driven solely by precipitation data it has drawn much criticism due to
lack of consideration of other variables that in�uence droughts, such as; temperature,
evapotranspiration, and wind speed. However, SPI is based on the assumption that the
variability of precipitation is far greater than these variables and that they are tempo-
rally in-variate, such that their e�ect on droughts is negligible, whereas SPI assumes that
droughts are controlled by the temporal variability in precipitation. Secondly, SPI is also
unde�ned at regions with long-term precipitation averages below 1 mm, and thus may
not be appropriate in arid regions. Regardless, precipitation has been shown to be the
main variable in determining the onset, duration, and intensity of droughts (Heim, 2002).

An extension to the SPI was developed to address some of the shortcomings of the SPI.
The Standardized Precipitation Evapotranspiration Index (SPEI) also considers the sen-
sitivity to changes in potential evapotranspiration (PET) as well as precipitation (as SPI
does). As with API, the SPEI captures the response in drought conditions to variations in
daily maximum temperature through evapotranspiration. Due to this though, the SPEI
is sensitive to uncertainties in the variables used to derive PET, such as; wind speed,
surface humidity, and solar radiation (Vicente-Serrano et al., 2010). As such, at shorter
temporal scales, a simpli�ed PET is calculated based on the Thornthwaite approximation
(Thornthwaite, 1948). Similar to the SPI, the SPEI can be produced at various temporal
scales between 1− 48 months. Again, a minimum of 30 years of data is required to pro-
vide a robust distribution (McKee et al., 1993). As the SPEI has been shown to correlate
well with PDSI at longer time scales ( ≥≈ 18months Vicente-Serrano et al., 2010), it
is better suited for detecting and monitoring �uctuations in drought conditions due to
global warming (Vicente-Serrano et al., 2010). The SPEI is becoming more commonly
used in drought and extreme event (e.g forest �re) studies, with Urbieta et al. (2015) and
Turco et al. (2017) investigating its use in determining the e�ect of drought conditions
of �re activity and burned area. This follows on from the evaluation of drought indices
that suggest that SPEI shows a slightly higher correlation with observationally based
soil moisture over SPI, particularly in arid regions (McEvoy et al., 2012).

Each of these indices is similar in that they are precipitation and/or temperature based
often using water balance models to determine soil moisture. However, in each case,
they do not use soil water observations directly nor do they use modern remotely sensed
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techniques to estimate soil moisture. The Soil Moisture Index (SMI; Hubbard et al., 2007)
was developed to address the former and it represents the onset of agricultural droughts
by observing the dryness of a soil relative to a plant’s ability to extract water as scaled
from the di�erence between the wilting point and �eld capacity for a given plant (Hunt
et al., 2009). The primary issue with this is that it still requires some inherent infor-
mation of moisture content and that it is limited in its temporal scale referring to an
agricultural drought. Similarly, the Vegetation Condition Index (VCI; Liu et al., 1996)
has been developed to utilise remotely sensed data from the Advanced Very High Reso-
lution Radiometer (AVHRR). It likewise indirectly infers moisture content and its e�ect
on agricultural droughts through the dependence of vegetation on the climate. Quiring
et al. (2010) found that VCI was strongly correlated to 6-and-9-month SPI and to PDSI,
indicating that it is most suited to hydrological droughts and less sensitive to short-term
precipitation de�ciencies.

Due to the relationship between drought conditions and burn severity Balling Jr et al.
(1992), the Keetch-Byram Drought Index (KBDI; Keetch et al., 1968) was developed for
use by �re control managers within the United States Department of Agriculture. The
KBDI has been incorporated into the United States National Fire Danger Rating System
to estimate moisture and the inferred quantity of available fuel for burning, however, it is
also used operationally in Australia for forest �re danger prediction (Finkele et al., 2006).
The KBDI drives the moisture component of the drought factor within the commonly
used McArthur Forest Fire Danger Index (FFDI; discussed in Section 2.3). Mapping of
KBDI and its subsequent �re danger has been used operationally in the United States
(Johnson et al., 2001; Lorimer et al., 1988; Dolling et al., 2005), the Mediterranean (Pet-
ros et al., 2011; Garcia-Prats et al., 2015), Malaysia (Ainuddin et al., 2008), South Africa
(Verbesselt et al., 2006), and as mentioned in Australia (in context with changes in FFDI;
Fox-Hughes et al., 2014; Pitman et al., 2007; Clarke et al., 2011; Hennessy et al., 2005;
Clarke et al., 2012). Furthermore, it has also been used to assess the e�ect of climate
change on forest �res (Liu et al., 2010; Sherwood et al., 2010; Dai, 2013; Wang et al.,
2013; Gibson et al., 2017b). Similar in nature to API, in that only precipitation and tem-
perature are required, the major assumption behind KBDI is that the evapotranspiration
rate is a function of the mean annual rainfall meaning that it is spatially dependent on
the precipitation. Also, KBDI assumes that the water holding capacity is at a maximum
of 20 cm. However, for clay soils, this equates to a soil depth of 80 cm indicating that
soil depth is not particularly well de�ned. Conversely, the KBDI is relatively simple to
calculate and is widely used.
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Table 2.1: Summary of the most commonly used drought/moisture indices, including their abbreviation,
the year introduced, the formula used for their calculation, and key variables and applications in which
they are used.

Index Year Formula Variables & Applications

API 1954 (APIn−1 + Pn−1)e−α∆t

(γ ×APIn−1) + Pn

Precipitation based and modulated using
a temperature controlled soil moisture de-
pletion, typically used for �ood forecast-
ing.

PDSI 1965 Multiple Precipitation and temperature analysed in
a physical water balance model.

RAI 1965 ±3
P − P̄
Ē − P̄

Snowpack, reservoir storage, stream�ow,
and Supply Index precipitation.

KBDI 1968 [203.2−Q]
[
0.968e0.0875T+1.5552 − 8.3

]
[1 + 10.88e−0.001736R × 10−3]

Precipitation and soil moisture analysed
in a water budget model used by �re man-
agers.

MSDI 1972
Peff + ET

Peff = rain− interception− runoff

ET = aiTmax + bi

Precipitation and soil moisture analysed
in a water budget model using run-o�
data and used by �re managers.

SWSI 1982 aPsnow + bPprec + cPstrm + dPresv − 50

12
Snowpack, reservoir storage, stream�ow,
and Supply Index precipitation.

SPI 1993 ±
(
t−

c0 + c1t+ c2t2

1 + d1t+ d2t2 + d3t3

)
A statistical distribution �t to the precipi-
tation time series producing a de�cit/sur-
plus index.

VCI 1996 100
5 (NDV I −NDV Imin)

(NDV Imax −NDV Imin)
− 5 Determines moisture using remotely

sensed di�erences in vegetation radi-
ances from NDVI.

SMI 2008
[

5 (SM −WP )

(FC −WP )
− 5

]
Normalised soil moisture, derived using
the idealistic water availability for plants
calculated from the di�erence between
the �eld capacity and the wilting point.

SPEI 2010 W −
c0 + c1W + c2W 2

1 + d1W + d2W 2 + d3W 3
Precipitation and Temperature based and
using a climatic water balance to produce
a de�cit/surplus index at di�erent time
scales from a log-logistic probability dis-
tribution over the time series.
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Similar to the KBDI, Mount’s Soil Dryness Index (MSDI; Mount, 1972) is also used by �re
control managers. In Tasmania and Western Australia it is used in exchange for the KBDI
in the drought factor component of the FFDI, and like the KBDI it is an empirically de-
rived cumulative SM de�cit index. However, it di�ers from the KBDI in the estimation
of evapotransporation which is determined by applying a vegetation �ltration model.
The MSDI is essentially a water balance model that takes into account rainfall, run-o�,
and interception. The retrieval of vegetation for de�ning evapotransporation is derived
utilizing the MODIS leaf area index (LAI) product (MCD15A2H; Myneni, 2015). For each
vegetation category, parameters are de�ned for the canopy rainfall interception fraction,
the canopy storage capacity, wet evaporation rates, and �ash-runo� fraction using a lin-
ear relationship to LAI as per (Finkele et al., 2006). One drawback of the MSDI is that
the regression coe�cients used are based on in situ observations of evapotranspiration
from capital cities in the Australian states of Victoria, Tasmania, and South Australia.
This means that both the calculation of MSDI is computationally time-consuming and
that values are spatially dependent.

Each one of the indices has their drawbacks and advantages, with a number of studies
comparing various of the indices against remotely sensed and modelled products and in
situ soil moisture both in Australia and abroad (e.g. Holgate et al., 2016; Kumar et al.,
2017; Heim, 2002; Keyantash et al., 2002; Mishra et al., 2010; Vicente-Serrano et al., 2010;
Sims et al., 2002; Quiring et al., 2010) in order to identify their e�ciency and charac-
teristics. Keetch et al. (1968) discussed the further analysis of these indices in relation
to FFDI using various fuel loadings and vegetation types adding to their simple water
balance model (precipitation - evaporation). However, despite the vast improvements
and di�erences in estimating soil moisture, seldom have these indices been compared to
each other in relation to their possible use in the drought factor of the FFDI and in their
relationship to �re occurrence and intensity.

2.3 Fire Danger and the Retrieval of Fire Metrics

Forest �res occur regularly on a large-scale across semi-arid regions such as southeast-
ern Australia (Hennessy et al., 2005). These �res cause signi�cant strain on forest man-
agement services attempting to mitigate their impact on both the community and the
economy. Forest and �re management services throughout the world have long used
vegetation management in the form of controlled burning to minimise fuel load and
to mitigate potential �re danger in a region at risk. Forest �res, either through long-
or short-term ecological impact, alter the vegetation and soil attributes from burning of
surface litter to changing the species composition throughout a forest (Cocke et al., 2005;
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Keeley, 2009), and if applied as a preventive measure, reduce future large-scale �re risks.

‘Fire severity’ or ‘burn severity’ describe the immediate e�ects of a �re on organic matter
such as vegetation, soil, and litter (Key et al., 2006; Keeley, 2009). In other words, burn
severity is a function of the ecological change due to �re (Cocke et al., 2005). Likewise,
�re intensity or ‘burn intensity’ are generally described as the rate of combustion of fuel
of a given �re in progress (Byram, 1959). The quanti�cation of �re intensity ranges from
the energy released from a �re to �re-line, to burned area versus fuel consumption, and
to burn scarring. However, when assessing the likelihood or risk of �re in a region sev-
eral terms and methods for its quanti�cation can be used. Economical (or technical) risk
assessors consider not only risk as the probability of �re, but also socio-economic loss
and infrastructure value; this is compared to �re management services which typically
de�nes risk as the likelihood of ignition (Hardy, 2005). ‘Hazard’ is also used commonly
and refers to the state of the fuel load, whilst burn severity speci�cally describes the
impact of a �re on the wildland system (Hardy, 2005; Key et al., 2006; Keeley, 2009).
Lastly, Beall (1946) describes �re ‘danger’ as including all the items which quantify how
and whether �res will start, what the spread and damage are, as well as their ability to
be contained. However, �re danger and risk can also be de�ned using metrics, such as
spread, damage, and ability to be contained. These are typically associated with incip-
ient �res and their conditions and do not present the likelihood or potential of �re. To
this extent, forest �re danger is typically quanti�ed using indices that incorporate at-
mospheric conditions such as, surface air temperature, precipitation, relative humidity,
and wind speed to name a few, as well as fuel moisture. Various �re danger indices exist,
including the McArthur Forest Fire Danger Index (FFDI; McArthur, 1967), the McArthur
Grassland Fire Danger Index (GFDI; McArthur, 1967), the Canadian Fire Weather Index
(FWI; Van Wagner, 1987), the United States National Fire Danger Ratings System (NF-
DRS; Deeming et al., 1972), and the Fosberg Fire Weather Index (FFWI; Fosberg, 1978).

In Australia, the FFDI is used operationally by the Bureau of Meteorology and �re man-
agement services and is applied in many studies to directly asses the level of forest �re
risk. Recently, there has been a large e�ort to increase the accuracy of FFDI using the
methods as mentioned above and from various remotely sensed products. However, it
has been found that there is a signi�cant variation in the classi�cation of risk categories
between such indices (FFDI and FWI) at low index values (Dowdy et al., 2009). More
particularly, several studies have investigated improvements to the drought factor com-
ponent of the FFDI, such as Gri�ths (1998). This introduced a smoothing function for
the drought factor and was introduced into operational use thereafter. Alternate drought
factors have also been investigated such as by Snyder et al. (2006), which presented a fuel
dryness index based on biophysical principles associated with energy exchange, de�ned
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as the daily ratio of sensible heat to available energy. They determined that the index
was more responsive to daily changes than most of the other indices, including the KBDI
and the fuel moisture code in the FWI, providing more accurate fuel dryness conditions
of live vegetation. Similarly, the KBDI (used within the drought factor) was modi�ed
for a better adaptation to Mediterranean conditions, also producing a faster response to
daily to meteorological conditions (Petros et al., 2011).

Fire danger indices are used to quantify the risk of �re danger based on meteorological,
climate and fuel information. These are then used to forecast risk and issue warnings in
regions likely to be a�ected. The most commonly used FDI globally is the Canadian For-
est Fire Weather Index (FWI) System (Van Wagner, 1987) and is calculated based on daily
observations of weather conditions. The FWI determines the risk of �re based on three
moisture components incorporating temperature, relative humidity, wind, rain, as well
as the wind itself. The three moisture components are numeric ratings of moisture con-
tent in i) the surface litter, characterised by the Fine Fuel Moisture Content (FFMC; used
to determine �re spread), ii) the lower organic layer of the forest vegetation calculated by
the Du� Moisture Code (DMC; used to determine fuel consumption), and iii) the deeper
organic layers comprised of larger woody vegetation and is indicated by the Drought
Code (DC; an indication of the overall drought conditions of the vegetation; Van Wag-
ner, 1987). However, in Australia, the MacArthur FFDI is used to assess the likelihood
and severity of forest �res (McArthur, 1967). The Australian Bureau of Meteorology is-
sues forecasts of the FFDI and the grassland curing levels to local �re authorities. Dowdy
et al., 2009 compared the FFDI and FWI across Australia from various case studies and
found that both FFDI and FWI performed similarly with the main variation between
the two occurring in regions where the index values were typically low (temperate and
tropical regions). Dowdy et al., 2009 determined that the FFDI typically indicated lower
severity than that of FWI in these regions, with the FFDI generally performing within
one standard deviation or about 15% of the FWI value. They concluded that since the
indices do not provide a direct physical relationship with any speci�c aspect of �re dan-
ger or �re behaviour, it is to be expected that the signi�cance of an index value will
show some degree of variation between di�erent locations” (Dowdy et al., 2009, pg.75).
They conclude that substantial improvements could be made in particular to the drought
factor, but would require substantial validation against known �re activity. Similarly, a
study by Cruz et al., 2007 determined that for pine plantations in Australia the FWI also
outperformed the FFDI in indications of extreme �re behaviour, indicating that the FWI
is more appropriate in heavily forested regions such as semi-arid and temperate regions
of Australia .

The FFDI framework as provided by McArthur, 1967 for forest �re prediction using al-
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ternative moisture indices was introduced by Liu et al., 2003. They compared the original
framework which uses observational data, with high-resolution data retrieved from the
HIRES model and also investigated using the Antecedent Precipitation Index (API) as a
proxy for the drought factor (DF). Liu et al., 2003 found that using the HIRES NWP model
provided a more structured soil moisture �eld resulting in improvements to FFDI predic-
tion. Secondly, Liu et al., 2003 found that replacing DF with the simpli�ed API yielded
a more direct relationship between the FFDI and precipitation. This could be largely
contributed to the API being a function of precipitation, and as such, provided more sta-
bility in prediction from high-resolution datasets. Using products such as API and SPI
(and aforementioned moisture indices) to infer �re risk allows for calculations of risk
to be made at various spatial and temporal resolutions as well as heavily forested areas
and areas a�ected by retrieval limitations. Similarly, Sharples et al. (2009) investigated
the use of a simple �re danger index based on antecedent conditions. Their comparisons
suggested that their �re danger index may be a useful pedagogical tool in the context of
�re danger and �re weather, providing similar results to the FFDI and the FWI, but as
mentioned, this still does not take into account the expected intensity of �res.

During forest �res, the concentration of pyrogenic emissions is directly proportional to
the amount of biomass consumed and provides an estimate of �re intensity (Delmas et
al., 1995). There are many methods to determine �re intensity through the amount of
energy released by a �re resulting from the combustion of fuels with a common method,
e.g. �re-line intensity being a measure of the energy released along the front of the �re
itself (Byram, 1959). Quanti�cation of most methods such as the �re-line intensity poses
substantial challenges with large uncertainty in estimating, combustion e�ciency, fuel
load and type, and the spread or propagation of the �re itself (French, 2004; Arnett et al.,
2015; Hudak et al., 2016). Beyond this, complex burn patterns resulting from a multitude
of ignition points can lead to stationary �res which have both a signi�cant heat release
and extreme turbulence for which �re-line intensity cannot be de�ned. Similarly, em-
ber spotting may induce multiple �re-lines meaning that the estimation of the total �re
energy released from �res according to �re-line intensity may be inaccurate over short
(minutes) temporal scales. Within the same context, simple estimates of biomass com-
bustion can result in large uncertainties due to the variation in �re propagation, therefore
estimates typically ignore the inter-dependence of smouldering and �ame combustion.
Simple biomass combustion can be de�ned from Eq 2.3 Seiler et al., 1980

M = A×B × C (2.3)

where, A is the burned area (km2), B is fuel load (kg/km2), C the fraction of available fuel
burned, and M the estimated amount of dry fuel burned (kg) (Ellicott et al., 2009). The
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total emissions of direct pyrogenic carbon released can be then calculated by multiplying
M by the fraction of volatile carbon contained in the fuel (Eq 2.4):

Ex = EFx ×M (2.4)

Where Ex is the total emission load (g); EFx is the emission factor for the speci�c veg-
etation type (g/kg) and M is the fuel burned in Eq 2.3 (Ellicott et al., 2009). Despite im-
provements with remote sensing techniques the parametrisation of E has typically been
proved inaccurate, as estimates of the B andC parameters have not been readily available
and any estimates contained large uncertainties (Barbosa et al., 1999; French, 2004). Fur-
thermore, this has made remotely sensed emission estimates through this method very
imprecise, resulting in large di�erences with earth observations (Barbosa et al., 1999).
On top of this, there is a lack of agreement in the algorithm to characterise burned area
from remotely sensed data and Korontzi et al. (2004) and Korontzi et al. (2004) showed
that this can lead to a di�erence in the estimate of biomass consumed by a factor of two
(Ellicott et al., 2009).

Andreae et al. (2001) suggested that the development of a new method to accurately
estimate the energy emitted by �res and the amount of fuel combusted could be achieved
through Fire Radiative Power (FRP) and Fire Radiative Energy (FRE; Wooster et al., 2005).
Both FRP and FRE have equivalent units to �re-line intensity and �re power and, similar
to E, FRP and FRE are a measure of the severity and intensity of a �re through the energy
emitted. FRP is de�ned as the quanti�cation of the radiant heat output from the �re
(Roberts et al., 2005; Ichoku et al., 2008) with Freeborn et al. (2008) showing that it is
related to smoke emissions released. FRP is a direct result of the combustion process,
where carbon is oxidised to CO2 (and other compounds) releasing energy stored in the
fuel as heat (Wooster et al., 2005; Ellicott et al., 2009). FRP is the rate of release of the
radiative component and Wooster et al. (2005) found that it is highly correlated to the
combustion rate, however, radiant heat from smouldering fuel beds can signi�cantly
contribute to FRP where burning has ceased. Integrating FRP over the whole �re results
in the total energy released or the Fire Radiative Energy (FRE) and hence, Wooster et
al. (2005) found that FRE should be linearly proportional to the total biomass of fuel
consumed. As remotely sensed retrievals improve, FRP and FRE are becoming more
commonly used in studies to describe �re severity and intensity (Wooster et al., 2005;
Roberts et al., 2005; Ellicott et al., 2009). The rate of fuel combustion can be described
from Eq 2.5:

(C6H10O5)n+O2 + ignition temperature→ H2O + CO2 + heat yield (2.5)
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From the Stefan-Boltzmann Law, the radiant component released is emitted as electro-
magnetic waves and is proportional to the absolute temperature of the �re (assumed to
be a black body) raised to the fourth power (Wooster et al., 2005; Ellicott et al., 2009). The
relationship between �re temperature and spectral radiance was subsequently shown to
closely match the Stefan-Boltzmann Law (Radiance = σT 4). Therefore FRP and FRE
are derived from a simple equation combining the sample size, emissivity of the �re and
Stefan-Boltzmann’s constant (Kaufman et al., 1998). As a result, FRP is ultimately calcu-
lated from the di�erence in brightness temperature of the �re pixel and the background
pixels (Kaufman et al., 1998; Wooster et al., 2005), where A is the area of a �re pixel:

FRP = (4.34× 10−19MWK−8km−2)× (T 8
4µm − T 8

4µm.background)× A (2.6)

As mentioned above, �re alters the vegetation, soil, and litter composition as well as ex-
posing and altering the colour and brightness of the surface soil. This causes changes in
the spectral response and as such can be detected through the NIR and MIR wavelengths
via remote sensing satellites (van Wagtendonk et al., 2004; Chuvieco et al., 2006). As
the accuracy of remotely sensed data has improved during recent years, it has become
a more common approach to determine burn metrics(Keeley, 2009). Various satellite
sensors (e.g. MODIS, ASTER, Landsat, RapidEye) are commonly used, with the Land-
sat Thematic Mapper identi�ed as the most accurate instrument used to estimate burn
severity. However, the spatial coverage is substantially limited (van Wagtendonk et al.,
2004; Brewer et al., 2005; Cocke et al., 2005; Chuvieco et al., 2006; Kokaly et al., 2007;
French et al., 2008).

Furthermore, there are many di�culties in determining the combustion e�ciency, fuel
load and �re behaviour propagation of the �re itself from other methods. Therefore
the determination of FRP and FRE through remotely sensed data is far more e�ective
and accurate (spatially and temporally) than other methods for determining �re severity
and intensity. This can not only be used for determining �re intensity but also to de�ne
thresholds between classes within the FFDI. A study by Maier et al. (2013) determined �re
detection thresholds using remotely sensed data from MODIS-based FRP in �re-prone
savanna in the Northern Territory. Maier et al. (2013) found that a steep increase in the
number of detections with increasing FRP indicated a clear detection threshold (3.6 MW
to 16.3 MW). However, they warn that minimum FRP is very sensitive to outliers and that
perhaps a better measure is the median FRP value and that further work on thresholds
of FRP for �re detection should be conducted. Similarly, Roberts et al. (2005) determined
that FRP retrievals from SEVIRI (Spinning Enhanced Visible and Infrared Imager) are
strongly comparable with those derived from near-coincident MODIS overpasses on a
per-�re base. However, due to SEVIRI’s inability to detect �re pixels with an FRP < 100
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MW, SEVIRI typically underestimated FRP with respects to MODIS at the regional scale.
ASTER has also been used for FRP retrieval by Giglio et al. (2008), where they statisti-
cally analysed 100 ASTER scenes determining that detection rates were between 80-90%
with false alarms varying between 9× 10−8 (India) and 2× 10−5 (USA/Canada). Giglio
et al. (2008) also found that ASTER FRP was accurate to within 20%, with the exception
of one (of 20) �re partially obscured by heavy soot. Satellite ‘overpasses’ will not nec-
essarily coincide with either clear skies or the appropriate time (Keeley, 2009) and it is
possible that several days to weeks may pass before an image can be acquired. This is
one signi�cant limitation in the retrieval of FRP from remotely sensed sources.

Similar to FRP and FRE, �re indices (such as FFDI) and �re risk can be spatially repre-
sented using remotely sensed data for easier interpretation by both weather forecasters
and local �re authorities. Despite signi�cant �re activity occurring in only a small por-
tion of the areal extent of maps, �re can have a wider impact spatially, particularly in
semi-arid regions (Moreno et al., 2013). The use of remotely sensed data for use in hazard
mapping and �re risk mapping has been introduced by Chuvieco et al., 1989. With the de-
velopment of Geographical Information Systems (GIS) techniques, processing large data
volumes has become increasingly easy and common. Many studies have been conducted
to monitor active �res and visualise predictions of �re hazards and danger. These use
a range of variables to approximate �re hazard ranging from vegetation moisture, fuel
types, wind direction and speed among many others (Chuvieco et al., 2007). Remotely
sensed products have also been used to assess the e�ects of �re on vegetation character-
istics via the re�ected visible, near infrared, and short-wave infrared wavelengths. For
example, Chuvieco et al. (2006) estimated �re e�ects from determining the composite
burn index (CBI) through applying a radiative transfer model to predict how the spec-
tral re�ection from a vegetated surface will change due to �re. They showed that �res
alter the electromagnetic spectrum, speci�cally in the near infrared range and conse-
quently vegetation indices that are derived from spectral re�ection produce correlations
with CBI. Likewise, a study by Chuvieco et al., 2004 investigates the use of Normalized
Di�erenced Vegetation Index (NDVI) and temperature to infer live fuel moisture content
for use in �re danger indices. However, there are few studies that include the use of soil
moisture to infer �re risk and danger.

Similarly to Balling Jr et al. (1992, who determined that the PDSI accounted for approxi-
mately one-third of the temporal variance in the burn area) and Liu et al. (2003), Chaparro
et al. (2016) investigated the use of soil moisture for determining �re risk, speci�cally
for producing high resolution (1km) �re risk maps over Spain. From �re pre-conditions
using simple thresholds of temperature and soil moisture, �re risk maps with two cate-
gories of low and high risk were produced. That is, the higher the surface temperature
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and lower the soil moisture at a location, the higher the risk of �re (Chaparro et al., 2016;
Chuvieco et al., 2014; Petros et al., 2011). These �re risk data were then compared with
MODIS derived �re detections to determine the success of predictions. This initial study
produced promising results with success ranging from 46% to 85% of �res falling within
high-risk zones (Chaparro et al., 2016). Likewise, Petros et al. (2011) suggested that the
drought factor/index should be based on the drought conditions of the previous day in
the form of an antecedent moisture index, which may also be expressed as a function
of potential evapotranspiration (PET). They also suggested that this empirical drought
index should have a cumulative form and be able to be produced using a simple function
of basic and easily available meteorological variables (Petros et al., 2011).

2.4 Past and Future Changes In SM, Tx and FFDI

The relationship between forest �res and atmospheric conditions is relatively well un-
derstood (Pereira et al., 2005; Trigo et al., 2006; Potter, 2012). Changes in �re risk can be
a�ected through large-scale dynamics as well as through inter-annual variability such as
the El Nino Southern Oscillation (Williams et al., 1999). However, exacerbated �re risk is
associated with changes in the synoptic weather conditions, in particular, wind direction
and speed, temperature, relative humidity, and precipitation. Likewise, as mentioned
previously, de�cits in soil moisture are strongly related to an increase in temperature
extremes and in the number of hot days (Fischer et al., 2007; Hirschi et al., 2010; Mueller
et al., 2012). This can, in turn, exacerbate the aforementioned conditions through land-
climate feedbacks, leading to a higher �re danger, as well as being directly related to an
increase in �re intensity. Fire risk can also be a�ected by changes in the climate system
as a whole (Hennessy et al., 2005); for example as the Earth’s climate changes due to
anthropogenic forcing (Charlson et al., 1992), it is expected that an increasing number
of temperature extremes, precipitation de�cits, and consequently the parameters asso-
ciated with high �re risk will occur.

Each of these has changed throughout the 20th-century Williams et al. (2001), Hennessy
et al. (2005), Pitman et al. (2007), Dai (2011b), Clarke et al. (2012), She�eld et al. (2012),
and Fox-Hughes et al. (2014), and in line with the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report Summary for Policy Makers, climate extremes
are projected to change signi�cantly in the future (IPCC, 2013b). In particular, the num-
ber of warm days is likely to increase (Perkins et al., 2012; Seneviratne et al., 2013; Gibson
et al., 2017a), as well as the number of prolonged precipitation and soil moisture de�cits
(Sherwood et al., 2010; Sherwood et al., 2014; Dai, 2013; Wang et al., 2013), in turn com-
pounding the resultant �re danger. Changes in the global mean temperature throughout
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the 20th and 21st century as simulated by the CMIP3 (Coupled Model Intercomparison
Project Phase 3) and CMIP5 models is shown in Figure 2.2. Each of the last iterations
of the CMIP project indicated a similar pattern of global warming. However, the sim-
ulated twentieth-century warming is less gradual in the CMIP5 model mean compared
to CMIP3. This is due to the radiative forcings that drive the model being more com-
plete, including solar and volcanic forcings, and indirect aerosol e�ects (Knutti et al.,
2012). The twenty-�rst-century warming is not as comparable between the models be-
cause the CMIP5 models use the new Representative Concentration Pathways (RCPs),
whereas the CMIP3 models used the Special Report on Emissions Scenarios (SRES) B1,
A1B and A2 scenarios. However, despite this, each of the SRES and RCP simulations in-
dicates substantial warming throughout the century (Figure 2.2). Both iterations indicate
a similar mean and range of the climate sensitivity and the transient climate response
and share consistent projection uncertainties.

Figure 2.2: Figure and caption taken from Knutti et al. (2012), page 370. Global temperature change (mean
and one standard deviation as shading) relative to 1986− 2005 for the SRES scenarios run by CMIP3 and
the RCP scenarios run by CMIP5. The number of models is given in brackets. The box plots (mean, one
standard deviation, and minimum to maximum range) are given for 2080− 2099 for CMIP5 (colours) and
for the MAGICC model calibrated to 19 CMIP3 models (black), both running the RCP scenarios.

Through simulations from climate models, increases in temperature extremes have been
attributed to anthropogenic forcing at global and regional scales (Morak et al., 2011;
Knutti et al., 2012; Morak et al., 2013; Kim et al., 2015). Likewise, the e�ect of anthro-
pogenic forcing on temperature extremes at smaller spatial and temporal scales has been
extensively studied (Wang et al., 2013; Perkins, 2015; Perkins et al., 2015; Lorenz et al.,
2016; Gibson et al., 2017a), with a large inter-model spread observed at the local to re-
gional scale for both heat wave trends and climatology (Gibson et al., 2017a). Simulated
increases in temperature extremes will continue regardless of the emission path chosen,
however, reductions in carbon dioxide emissions will signi�cantly in�uence the magni-
tude of heat extremes later this century (e.g. Figure 2.2; Knutti et al., 2012; Tebaldi et al.,
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2016). Unremitting, an increase in emissions will drive heat extremes such as the 2003
European heatwave, which was associated with strong soil moisture de�cits (Fischer et
al., 2007), such that current heat extremes will be considered standard or in fact cool by
the end of the century (Christidis et al., 2014).

Figure 2.3: Figure and caption taken from Dai (2013), page 53. (a) Percentage changes from 1980− 1999

to 2080 − 2099 in the multimodel ensemble mean soil moisture content in the top 10 cm layer (broadly
similar for the whole soil layer) simulated by 11 CMIP5 models under the RCP 4.5 emissions scenario.
Stippling indicates at least 82% (9 out of 11) of the models agree on the sign of change. (b) Mean PDSI
averaged over 2090 − 2099 computed using the 14 model ensemble mean climate (including surface air
temperature, precipitation, wind speed, speci�c humidity and net radiation) from the CMIP5 simulations
under the RCP 4.5 scenario. A PDSI value of −3.0 or below indicates severe to extreme droughts for the
present climate.

Likewise, it is well documented that changes in precipitation extremes (both positive
and negative) will occur as well as consequent changes in soil moisture and drought
conditions (Purich et al., 2013; Sippel et al., 2017). Through many studies, PDSI, a mea-
sure of drought or aridity has been identi�ed to increase during the last 60-years (IPCC,
2013a). This is particularly the case in mid-latitude semi-arid regions (Feng et al., 2013).
Sherwood et al. (2014) and Fu et al. (2013) concluded that this was due to the change
in temperature during this time as a result of the relationship between the earth and
the atmosphere. Future projections of changes (comparing the 1980-1999 and 2080-2099
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time periods) soil moisture and mean PDSI are illustrated in Figure 2.3 (Dai, 2011b; Dai,
2013), identifying a strong increase globally throughout the 20th and 21st centuries. This
was suggested to be a result of the intrinsic overestimation in PDSI, and consequently,
She�eld et al. (2012) and Cook et al. (2014) found that a modi�ed PDSI (using a more ro-
bust estimator of potential evaporation) had a smaller trend throughout the 20th century.

These are similar to trends seen in projected precipitation and evapo[transpi]ration. As
mentioned previously, evapotranspiration is the common factor in both the energy and
water balance and drives the relationship between soil moisture and temperature ex-
tremes, meaning that trends in evapotranspiration will signi�cantly in�uence trends
in both soil moisture and temperature. Historically, evapotranspiration was generally
found to increase globally since the 1980s (Zeng et al., 2012; Zeng et al., 2014; Wang
et al., 2010), but both Miralles et al. (2013) and Mueller et al. (2013) also identi�ed a de-
cline in global evapotranspiration after 1998. Douville et al. (2012) showed that historical
changes in evapotranspiration were attributed to the e�ect of anthropogenic radiative
forcing and could increase with higher radiative forcing in the future.

Changes in precipitation, drought, and evapotranspiration under climate change condi-
tions can have a large in�uence on the coupling with temperature extremes (Douville
et al., 2016). In turn, this can lead to changes in the fuel moisture and the resultant ob-
served �re frequency and extreme �re weather days throughout the twenty-�rst century
(Flannigan et al., 2015). This outlines the in�uence of not only climate conditions but
vegetation conditions have on �re activity. Forkel et al. (2017), also investigated anthro-
pogenic controls, as well as, climate and vegetation controls of �re activity between 1997
and 2011. They concluded that the spatial variation in the relationship between controls
is not homogeneous, in particular for Australia. As Figure 2.4 indicates, �re activity in
arid-central Australia is mostly controlled by a combination of climate and vegetation
conditions, whereas, in alpine and coastal south-eastern Australia, �re activity is largely
controlled by vegetation conditions. This leads to varying trends in �re activity across
Australia. In particular, Andela et al. (2017) indicated that global burned area declined
by 24.3± 8.8% over the previous 18 years and suggested that the decrease in �re activity
may be as a result of the expansion and intensi�cation of agricultural land use and its
e�ect on vegetation. However, Andela et al. (2017) also shows that there are contrasting
trends in �re activity depending on the product used and spatially. In Australia, on aver-
age, the MODIS MCD64A1 product indicated a 1.53% (2003-2015) increase in burned area
per year, whereas, the GFED4 (Global Fire Emissions Database version 4) and FireMIP
(Fire Model Inter-comparison Project) products indicate a trend of -2.53% (1998-2015)
and -0.5% (1997-2013) per year, respectively.
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Figure 2.4: Figure and caption taken from Forkel et al. (2017), page 19. Example of combined climate,
vegetation, and human controls on �re activity based on the SOFIA model SF.124421. The maps in (a-e)
show the average response value for each functional relationship for the period 1997-2011. High values
(1, red) indicate that this factor allows unlimited burning and low values (0, blue) indicate that this factor
restricts burning. The map in (f) is a red-green-blue composite of the human in�uence (map in a, red
channel), the combined direct and long-term vegetation e�ect (mean of d and e, green channel), and the
climate e�ect (mean of b and c, blue channel). Bright and dark colours indicate a strong restriction and
allowance of �re activity, respectively.

Not only has there been studies on the change in �re activity over the past 20-50 years
but also there have been several studies that have investigated �re danger in the 20th
century and projected through the 21st century both globally and regionally. Liu et al.
(2010) investigated the potential of global wild�re under climate change using KBDI
which is analogous to �re potential. They compared historically derived KBDI, driven
by observed maximum temperature and precipitation, to projected changes for 2070-
2100. Using four GCMs, each with four emission scenarios, it was determined that future
�re potential increased signi�cantly in the United States, South America, central Asia,
southern Europe, southern Africa, and Australia. Similarly, Flannigan et al. (2013) used
three GCMs and three emission scenarios to determine that �re season and �re severity
increased for most of the globe, in particular, for the Northern Hemisphere. Here, �re
potential was determined using the Cumulative Severity Rating (CSR) and the 1971-2000
baseline was compared to mid-century (2041-2050) and late-century (2091-2100) values.
Regionally, many studies have focused on Canada and the United States, with Stocks et
al. (1998), Brown et al. (2004), and Wotton et al. (2010) in agreement that there is a large
increase in the areal extent and magnitude of �re danger in both countries between base-
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line periods and late 21st century values, using various metrics to assess �re potential
applied to di�erent numbers of GCM and RCMs.

Similarly, several studies have investigated �re danger both in previous decades and pro-
jected through the 21st century in Australia. Williams et al. (2001) quanti�ed the impact
of climate change on �re risk through analysing daily and seasonal FFDI produced us-
ing model simulations. They used two di�erent CO2 concentration forcings from the
CSIRO 9-level general circulation model (CSIRO9 GCM) for a 30-year period between
1960 and 1992. They found that there was an increase in the number of days with very
high and extreme �re danger when the CO2 was doubled and that the seasonal �re
danger increases in response to the doubling of CO2’s through its e�ect on maximum
temperature. Following this, the historical change in annual cumulative FFDI between
1973 and 2010 at 38 in situ observational sites was investigated by Clarke et al. (2012).
They found that at 16 of the 38 sites, cumulative FFDI increased signi�cantly and for
24 sites, the annual 90th percentile FFDI increased signi�cantly. They also found that
increases were greatest during the spring and autumn austral seasons and in the interior
of the continent.

Simulated projected changes in FFDI have been studied across multiple regions and
scales (Hennessy et al., 2005; Pitman et al., 2007; Clarke et al., 2011; Fox-Hughes et
al., 2014) .Hennessy et al. (2005) investigated the change in FFDI and the Grassland Fire
Danger Index (GDFI) using two RCMs as input for climate change scenarios for the years
2020 and 2050, across 17 sites. These results were in agreement with global studies show-
ing an increase in �re-weather risk for both 2020 and 2050. This included the average
number of days when the FFDI rating is very high or extreme. Similarly, Pitman et al.
(2007) investigated the change in FFDI and GDFI using gridded data produced by RCMs
for 2050 and 2100. As with Hennessy et al. (2005), Pitman et al. (2007) showed that there
was a consistent increase in �re risk over Australia and that this was principally driven
by warming and reductions in relative humidity. Further regional studies by Clarke et al.
(2011) and (Fox-Hughes et al., 2014) investigated the change in FFDI using the CSIRO-
Mk3-0-0 RCM and GCMs across four regions along the east coast of Australia and in Tas-
mania, respectively, with the former focusing on the seasonality of FFDI changes over
time. Furthermore, Flannigan et al. (2015) concluded that the sensitivity in the changes
in fuel moisture due to an increase in temperature extremes from climate change would
result in drier fuels and an increase in the �re frequency and �re extremes. In summary,
the importance of understanding the relationship between changes in precipitation, tem-
perature, evapotranspiration, fuel moisture, and soil moisture and their in�uence on �re
conditions and extremes is underpinned by the continued in�uence of climate change
on the earth system and climate extremes.
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Summary

2.5 Summary

The literature on FFDI, FRP and �re occurrence as well as moisture indices, and climate
extremes have been critically reviewed. From this review, it is apparent that:

1. Whilst much research has been undertaken on the use of �re risk indices for �re
forecasting, few studies have used high spatial resolution daily and monthly data.
This extends to limited studies on the use of soil moisture, which has long been
associated with forest �res and �re risk. Often simple measures of precipitation
which are used to produce indices of soil moisture are available at the daily time
scale whereas other remotely sensed soil moisture products have a temporal re-
trieval of several days, yet these proxies are not included in calculations for �re
risk indices. One caveat is of course that [drought] indices of soil moisture do not
necessarily correlate perfectly with in situ or remotely sensed measurements soil
moisture. Therefore, it is important to compare the performance of all available
products used to calculate FFDI. Furthermore, the relationship between indices and
temperature extremes has not been investigated in context with the transitional
zone in Australia.

2. Likewise, little research has been conducted on the relationship between soil mois-
ture, FFDI, and FRP, not only to determine minimum �re detection thresholds but
also to better understand the e�ect of �re pre-conditions on �re intensity and
severity.

3. Lastly, despite the e�ect of climate change on �re risk being investigated by sev-
eral sources, studies have so far focused on a speci�c region within Australia or
used data from local stations for comparisons across various climates within Aus-
tralia and either look into historical changes or future projections but not both
consistently. Whilst there are global studies indicating the overall changes in �re
danger for Australia, FFDI itself, which is used operationally, has yet to be studied
using an ensemble of GCM’s

From this review and using the previous studies as a framework, the relationship of vari-
ous soil moisture indices to the number of hot days and FFDI in Australia and how this is
related to �re intensity and frequency will be investigated. Fire intensity as determined
from FRP will be compared against the FFDI both spatially and temporally through the
twentieth and twenty-�rst century. Through investigation of these relationships, we will
ascertain the potential usefulness of remotely sensed data for forecasting forest �res and
improve on the current framework for calculating FFDI as well as investigating the e�ect
of climate change on FFDI.
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CHAPTER3
Methods

Overview This chapter presents the methodologies and data-sets that are com-
mon to analysis throughout this thesis. In situ data that are collated for this study form
the reference for comparison with satellite and modelled data from which various indices
are computed. The in situ data were obtained from the OzNet, OzFlux and the CosmOz
networks in Australia. Further datasets used throughout this study include; AWAP and
ERA-Interim (land surface model derived datasets), CMIP5 (intercomparison study of
various climate models), SOI (inter-annual variability index), MODIS (remotely sensed
datasets) and the ESA CCI (collaborative initiative including various datasets, such as
SM, �re, cryosphere, etc). API, SPI, KBDI, MSDI and other indices were calculated using
a combination of the aforementioned datasets. Additionally, statistical methods used in
this study, as well as the methods used to calculate indices and their speci�cations, are
discussed in this chapter in detail.
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In situ Datasets

3.1 In situ Datasets

3.1.1 OzNet hydrological monitoring network

In situ soil moisture data were retrieved from several observational soil moisture net-
works. The Australian monitoring network for soil moisture and micrometeorology
(OzNet) operated in collaboration between Monash University and The University of
Melbourne consists of 64 dedicated soil moisture sites in the Murrumbidgee (Smith et al.,
2012) and Goulburn (Rüdiger et al., 2010) River catchments, in New South Wales (avail-
able at http://www.oznet.org.au). The OzNet soil moisture observations record soil water
content at multiple depths between 0-90 cm (0-7 cm, 0-30 cm, 30-60 cm, 60-90 cm) and
are quality controlled by comparing with rainfall observations (Smith et al., 2012). Mea-
surements are recorded using Campbell Scienti�c time/frequency-domain re�ectome-
ters (older sites) and Stevens Hydraprobe sensors (newer sites), and tipping bucket rain
gauges at between 20- to 30-minute intervals depending on the site (Smith et al., 2012).
Measurements infer volumetric soil moisture from the soil’s dielectric constant and con-
ductivity (for further of these methods see; Rüdiger et al., 2009; and Robinson et al., 2008).
The OzNet sites span a range of climate regimes, soil types, vegetation and land use as
well as a range in elevation from 50 m to up to 1000 m. The location of OzNet sites, as
well as a detailed overview of their attributes, can be found in Figure 3.1 and Table 3.1.

3.1.2 Terrestrial Ecosystem Research Network: OzFlux

The Australian �ux tower network (OzFlux) is part of the FluxNet global network of over
500 micrometeorological �ux tower sites that primarily use eddy covariance methods to
measure the exchanges of carbon dioxide, water vapour, and energy between the atmo-
sphere and biosphere (Cleverly, 2011). OzFlux consists of 27 active (as of August 2017)
observational sites and 10 inactive sites that measure energy and atmospheric �uxes as
well as soil moisture, soil temperature, air temperature, wind pro�les and precipitation.
Soil moisture is measured at each site typically using either frequency-domain re�ec-
tometers (generally Campbell Scienti�c CS-616 probes) or time-domain re�ectometers
(generally Campbell Scienti�c CS-610 probes) at 30-minute intervals. Data are available
at four levels of processing; level three provides quality controlled soil moisture content
at various depths (depending on site and probe type; Beringer, 2014) and are used here.
OzFlux data are available for both active and inactive sites for varying periods between
2008-2017 via the online portal (http://data.oz�ux.org.au/portal/home.jspx).
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3.1.3 Australian Cosmic-ray Neutron Soil Moisture Monitoring Net-
work

The Australian cosmic-ray probe network (CosmOz) provides continuous estimates of
soil moisture at 17 locations (16 calibrated) around Australia, with each location contain-
ing a CRP-1000b Hydroinnova cosmic-ray probe (Hawdon et al., 2014). Unlike gravimet-
ric measurements and conventional dielectric re�ectometry measurements, cosmic-ray
probes passively measure the near-earth-surface (2 m) fast neutron �ux produced by cos-
mic rays (Zreda, 2016). The fast neutron �ux is sensitive to changes in surface moisture
as it is inversely correlated to the presence of hydrogen. That is, the higher the moisture
content, the lower the neutron count as a consequence of a greater amount of scattering.
Due to this, and the insensitivity to soil chemistry (bulk density, surface roughness, and
soil texture), cosmic-ray probes are ideal to measure variations in surface soil moisture.
Cosmic-ray probes have a horizontal footprint of up to 660 m and estimate soil moisture
at depths of between 12 to 76 cm (Hawdon et al., 2014). The e�ective depth depends
strongly on soil moisture itself, decreasing non-linearly with increasing moisture con-
tent. Cosmic-ray probe measurements require a correction to account for the e�ects of
atmospheric pressure changes and water vapour pressure changes on variation in the
incoming fast neutron �ux, and each probe has been modulated by the soil moisture
conditions at each location. These corrected values are converted to a volumetric soil
moisture using a calibration function based on the known local wet and dry moisture
conditions. As with both AWAP and OzFlux, the CosmOz observational network is man-
aged by CSIRO and is available freely online (http://cosmoz.csiro.au/), with only level 4,
calibrated, hourly data used for analysis. Further details outlining the methods of data
processing and calibration of sites are described by (Hawdon et al., 2014). The locations
of the CosmOz sites, used here, are shown in Figure 3.1 as well as the details in Table
3.1.
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In situ Datasets

Figure 3.1: Köppen-Geiger climate regimes as produced by Peel et al. (2007). Sites from the OzNet, OzFlux
and CosmOz networks are indicated using double-lettered codes. Yanco, Kyemba and Adelong sites are
denoted with y*, k* and a* respectively. Full details of sites and codes are given in Table 3.1
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Table 3.1: Summary of soil moisture in situ sites from the OzNet, OzFlux, and CosmOz networks. Infor-
mation includes: site name, code, location, altitude, data period, number of observations, measurement
depth, and Köppen-Geiger climate regime.

Site Name Code Coordinates Alt [m] Data Period Obs Depth [cm] Koeppen Regime Reference

OzNet Murrumbidgee 1 m1 36.29 S, 148.97 E 937 14/09/01 - 31/05/11 3579 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)
Murrumbidgee 2 m2 35.31 S, 149.20 E 639 14/09/01 - 31/05/11 3579 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)
Murrumbidgee 3 m3 34.63 S, 148.04 E 333 15/09/01 - 31/05/11 3021 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Murrumbidgee 4 m4 33.94 S, 147.20 E 258 16/09/01 - 31/05/11 3578 0-7, 0-30, 30-60, 60-90 11 Temperate Smith et al. (2012)
Murrumbidgee 5 m5 34.66 S, 143.55 E 62 28/09/01 - 28/02/11 3473 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Murrumbidgee 6 m6 34.55 S, 144.87 E 90 28/09/01 - 31/05/11 3565 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Murrumbidgee 7 m7 34.25 S, 146.07 E 137 29/09/01 - 31/05/11 3564 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)

Yanco 1 y1 34.63 S, 145.85 E 120 28/12/03 - 31/05/11 2710 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 2 y2 34.65 S, 146.11 E 130 17/01/04 - 31/05/11 2690 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 3 y3 34.62 S, 146.42 E 144 29/09/01 - 31/05/11 3564 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 4 y4 34.72 S, 146.02 E 130 22/12/03 - 31/05/11 2716 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 5 y5 34.73 S, 146.29 E 136 10/12/03 - 31/05/11 2728 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 6 y6 34.84 S, 145.87 E 121 22/12/03 - 31/05/11 2624 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 7 y7 34.85 S, 146.12 E 128 18/12/03 - 31/05/11 2627 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 8 y8 34.85 S, 146.41 E 149 12/12/03 - 31/05/11 2633 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 9 y9 34.97 S, 146.02 E 122 18/12/03 - 31/05/11 2627 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 10 y10 35.01 S, 146.31 E 119 10/01/04 - 31/05/11 2604 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 11 y11 35.11 S, 145.94 E 113 09/01/04 - 31/05/11 2605 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 12 y12 35.07 S, 146.17 E 120 12/12/03 - 31/05/11 2633 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)
Yanco 13 y13 35.09 S, 146.31 E 121 12/12/03 - 31/05/11 2633 0-7, 0-30, 30-60, 60-90 7 Semi-Arid Smith et al. (2012)

Kyeamba 1 k1 35.49 S, 147.56 E 437 16/11/01 - 31/05/11 3516 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 2 k2 35.44 S, 147.53 E 351 17/11/01 - 28/02/11 3423 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 3 k3 35.43 S, 147.57 E 318 17/11/01 - 31/05/11 3515 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 4 k4 35.43 S, 147.60 E 296 16/11/01 - 31/05/11 3516 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 5 k5 35.42 S, 147.60 E 306 15/11/01 - 28/02/11 3425 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 6 k6 35.39 S, 147.46 E 317 06/11/03 - 31/05/11 2762 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 7 k7 35.39 S, 147.57 E 259 06/11/03 - 31/05/11 2762 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 8 k8 35.32 S, 147.34 E 326 06/11/03 - 31/05/11 2577 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 10 k10 35.32 S, 147.53 E 232 07/12/03 - 31/05/11 2546 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 11 k11 35.27 S, 147.43 E 327 07/11/03 - 31/08/09 2123 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Kyeamba 12 k12 35.23 S, 147.49 E 220 06/11/03 - 31/05/11 2762 0-7, 0-30, 30-60, 60-90 14 Temperate Smith et al. (2012)
Adelong 1 a1 35.50 S, 148.11 E 772 02/12/01 - 31/05/11 3500 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)
Adelong 2 a2 35.43 S, 148.13 E 595 02/12/01 - 31/05/11 2018 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)
Adelong 3 a3 35.40 S, 148.10 E 472 02/12/01 - 31/05/11 3220 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)
Adelong 4 a4 35.37 S, 148.07 E 457 02/12/01 - 31/05/11 3591 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)
Adelong 5 a5 35.36 S, 148.09 E 379 26/11/01 - 28/02/11 3229 0-7, 0-30, 30-60, 60-90 15 Temperate Smith et al. (2012)

CosmOz Baldry bl 32.87 S, 148.53 E 438 30/03/11 - 13/03/14 1078 Variable ≈ 15 14 Temperate Hawdon et al. (2014)
Tumbarumba tb 35.66 S, 148.15 E 1200 03/04/11 - 31/12/15 1501 Variable ≈ 10 15 Temperate Hawdon et al. (2014)

Weany we 19.88 S, 146.54 E 287 02/12/10 - 31/12/15 1855 Variable ≈ 15 6 Semi-Arid Hawdon et al. (2014)
Robson rb 17.12 S, 145.63 E 715 28/10/10 - 31/12/15 1890 Variable ≈ 15 2 Tropical Hawdon et al. (2014)

Gnangara gn 31.38 S, 115.71 E 50 16/05/11 - 06/12/15 1133 Variable ≈ 50 8 Temperate Hawdon et al. (2014)
Daly dy 14.16 S, 131.39 E 75 07/06/11 - 31/12/15 1646 Variable ≈ 50 3 Savanna Hawdon et al. (2014)

Norwin nw 27.57 S, 151.31 E 361 12/05/11 - 25/06/13 758 Variable ≈ 15 14 Temperate Hawdon et al. (2014)
Hamilton ha 37.83 S, 142.09 E 199 01/07/15 - 31/12/15 184 Variable ≈ 10 15 Temperate Hawdon et al. (2014)

Tullochgorum tl 41.67 S, 147.91 E 285 15/12/10 - 31/12/15 1842 Variable ≈ 15 15 Temperate Hawdon et al. (2014)
Mineral Banks mb 41.26 S, 147.79 E 284 06/12/13 - 31/12/15 748 Variable ≈ 15 15 Temperate Hawdon et al. (2014)

Gri�th gr 34.25 S, 146.12 E 127 01/10/11 - 09/05/13 541 Variable ≈ 15 7 Semi-Arid Hawdon et al. (2014)
Yanco yc 35.01 S, 146.30 E 124 01/04/11 - 31/12/15 1735 Variable ≈ 20 7 Semi-Arid Hawdon et al. (2014)

OzFlux Alice Springs Mulga as 22.28 S, 133.25 E 606 03/09/10 - 01/08/14 1428 0-10 4 Arid Cleverly (2011)
Arcturus ar 23.86 S, 148.47 E 170 01/01/11 - 01/01/14 1096 2.5, 5, 15 6 Semi-Arid Schroder (2014)
Calperum cl 34.00 S, 140.59 E 64 01/08/10 - 21/10/15 1907 0-10 7 Semi-Arid Calperum-Tech (2013)

Cape Tribulation ct 16.11 S, 145.38 E 66 01/01/10 - 03/09/15 2071 10, 75, 150 2 Tropical Liddell (2013a)
Cow Bay cb 16.10 S, 145.45 E 86 01/01/09 - 12/05/15 2322 4, 50 100, 200 2 Tropical Liddell (2013b)

Cumberland Plain cp 33.62 S, 150.72 E 200 19/10/12 - 31/10/15 1108 5, 30 15 Temperate Pendall (2015)
Gingin gg 31.38 S, 115.71 E 51 01/01/11 - 07/11/15 1771 10, 20, 40, 80, 160 8 Temperate Silberstein (2015)

Howard Springs hs 12.49 S, 131.15 E 64 01/01/01 - 03/09/15 5356 10-100 3 Savanna Beringer (2013a)
Riggs Creek rc 36.65 S, 145.58 E 152 18/12/10 - 06/07/15 1661 10, 20, 40, 80, 120, 200 14 Temperate Beringer (2014)

Samford sf 27.39 S, 152.88 E 71 01/01/10 - 31/12/15 2190 10, 30, 50, 80 14 Temperate Rowlings (2011)
Sturt Plains sp 17.15 S, 133.35 E 250 01/01/08 - 01/01/15 2556 5, 50 6 Semi-Arid Beringer (2013b)
Ti Tree East tt 22.29 S, 133.64 E 553 01/01/13 - 01/08/14 578 Various 4 Arid Cleverly (2013)

Wallaby Creek wc 37.43 S, 145.19 E 720 01/01/09 - 01/01/14 1826 10, 15, 20, 40, 80, 150 15 Temperate Beringer (2013c)
Warra wa 43.10 S, 146.65 E 100 05/03/13 - 17/02/15 715 10, 20, 40, 80 15 Temperate Phillips (2015)
Whroo wh 36.67 S, 145.03 E 165 01/01/12 - 03/09/15 1341 10, 20, 40, 80, 150 14 Temperate Beringer (2013d)

Wombat State Forest ws 37.42 S, 144.09 E 713 01/01/10 - 01/01/13 1096 10, 20, 40, 80, 150 15 Temperate Arndt, 2013
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3.2 Modelled Datasets

3.2.1 Australian Water Availability Project (AWAP)

Gridded data of daily maximum 2 m air temperature, precipitation, evaporation, transpi-
ration, potential evaporation, shortwave radiation, as well as modelled SM produced by
the Australian Water Availability Project (AWAP; Jones et al., 2009) are used here, both
for analysis, and to produce SPI, API, MSDI, and KBDI. AWAP is a gridded dataset derived
from in situ data collected at automated weather stations sourced from the Australian
Data Archive for Meteorology (ADAM; Jones et al., 2009). Data anomalies in AWAP are
generated using an optimal two-dimensional Barnes successive correction analysis pro-
cedure. The weighting function is obtained using the iterative Barnes algorithm (Jones
et al., 2000) along with cross-validation parameters described by Seaman (1989). Finally,
AWAP values are given from standard summing and multiplying of the weighting func-
tions of precipitation of the climatological and anomaly analyses from the decomposition
of the raw station data respectively (Jones et al., 2007). The 30-minute temporal reso-
lution in situ data are incorporated into a simple water balance model (which includes
SM) and projected onto an equirectangular 5 km grid across Australia (Jones et al., 2009).
Despite the Australia-wide spatial coverage, large uncertainties exist in central Western
Australia due to low station density, with this region being commonly masked for anal-
ysis. AWAP is commonly used for 20th-century Australian climatology studies (Perkins,
2015; Herold et al., 2016) due to its superior spatiotemporal coverage compared to other
products. Both daily and monthly means are available from the CSIRO’s (Common-
wealth Scienti�c and Industrial Research Organisation) AWAP model run 26j (historical
dataset between 1900 and current; Jones et al., 2009).

3.2.2 ECMWF ERA-INTERIM (ERA-INTERIM)

The European Centre for Medium-Range Weather Forecasts’ re-analysis (ERA) of obser-
vational datasets into a Numerical Weather Prediction (NWP) models has been devel-
oped since 1975. They incorporate land and atmospheric observational datasets within
an NWP-framework to reconstruct sea- and land-surface conditions over a speci�c time
(Dee et al., 2011). The �rst re-analysis (ERA-15) was produced for 15 years between 1978
and 1994. The second re-analysis product (ERA-40; intended to span 40 years) covered
a period of 45 years until 2002. The most recent re-analysis product produced by the
ECMWF is the ERA-Interim, which covers the period from 1979 to present using the
IFS (Cy31r2) data assimilation system. This system includes a 4-dimensional variational
analysis (4D-Var) with a 12-hour analysis window and a spatial resolution of approxi-
mately 80 km at 60 various vertical levels from the surface layer to 0.1 hPa (Dee et al.,
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2011). The temporal resolution of ERA-Interim is 6-hourly and is used for relative hu-
midity, the u and v wind components, the daily maximum 2 m air temperature, and the
precipitation �ux (mm per unit time).

3.2.3 Coupled Model Intercomparison Project Phase 5 (CMIP-5)

In order to investigate and address scienti�c questions arising from the IPCC AR4 (Inter-
governmental Panel on Climate Change 4th Assessment Report) assessment due to the
e�ects of climate change, the Coupled Model Intercomparison Project Phase 5 (CMIP-
5) was established by the Working Group on Coupled Modelling (WGCM; Taylor et
al., 2012). This is a set of experimental protocols for studying the output of coupled
atmosphere-ocean general circulation models (AOGCMs) both historically and predic-
tively using various emission scenarios. CMIP is essentially a peer-supported infrastruc-
ture to analyse, compare, and validate climate models in order to improve model output.
Since its inception in 1995, there have been �ve major iterations of the protocols with the
latest phase of experiments produced during the period 2010-2014 (Taylor et al., 2012).

Coupled atmosphere-ocean general circulation models allow for the simulated climate
to adjust to time-varying parameters of climate forcing, such as increasing/decreasing
atmospheric carbon dioxide among other greenhouse gas emissions. Typically, these
adjusted scenarios are compared against control runs in which anthropogenic radiative
forcing is held constant for the given base period (or forced only by changes in natural
forcings; Taylor et al., 2012). There are �ve main scenarios or Representative Concen-
tration Pathways (RCPs), the historical, RCP-2.6, RCP-4.5, RCP-6.0, and RCP-8.5, each
coming with varying greenhouse gas emissions and forcing. The number attached to the
RCP describes the value of the anthropogenic radiative forcing at the end of the century
in Wm−2 (Taylor et al., 2012). Models are typically run at either the global or region
scale, and for each of the RCP’s, have multiple runs with varying forcing parameters.
The historical runs are available for the period 1850-2005, whilst the RCP’s are avail-
able between 2006-2300 (Taylor et al., 2012). Further details of models, ensembles and
scenarios used are outlined in Chapter 7.

3.3 Satellite Datasets

3.3.1 Moderate-Resolution Imaging Spectroradiometer (MODIS)

A number of products are retrieved using the Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite and datasets. MODIS is a sensor with 36 bands ranging
from 0.4µm to 14.4µm and is installed on the Terra and Aqua satellites (Barnes et
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al., 1998) with derived products ranging from temperature, to evapotranspiration and
vegetation cover (for a full list of MODIS version 4-6 products see: https://Ipdaac.usgs.
gov/dataset_discovery/modis/modis_products_table/). This study uses the MODIS Col-
lection 6 datasets, which have recently replaced collection 5.1. Collection 6, level 3,
monthly, and daily processed data are available at various spatial (250m, 500m, 1km and
5.6km) and temporal resolutions (5-minute, daily, 8-daily, 16-daily, monthly and annu-
ally) depending on the dataset used. The thermal anomalies/�re locations MCD14DL
product is used for both FRP and �re hotspot retrieval. MCD14DL is processed by
the Land, Atmosphere Near real-time Capability for EOS (LANCE) Fire Information for
Resource Management System (FIRMS), using swath products (MOD14/MYD14) rather
than the tiled MOD14A1 and MYD14A1 products (Giglio, 2015). FRP retrieval is per-
formed using the approach of Wooster et al. (2005), and is �agged by the MODIS MOD14/
MYD14 �re and thermal anomalies algorithm (Giglio et al., 2003) as containing one or
more �res within the pixel and also indicating con�dence levels. As described in section
3.4.4, the MODIS leaf area index product (MCD15A2H; Myneni, 2015) is used to calculate
the vegetation/evapotranspiration component within the MSDI and is available at 500 m
resolution per 8-days. Likewise, the MODIS MOD13Q1 product is used for determining
vegetation through NDVI (Normalized Di�erenced Vegetation Index) at 16-day intervals
at 250 m resolution (Didan, 2015). Data are obtained from the Land Processes Distributed
Active Archive Center (LPDAAC; https://lpdaac.usgs.gov/) and are upscaled to 5 km and
25 km to match the spatial resolution of various other datasets used for analysis in this
study.

3.3.2 European Space Agency Climate Change Initiative (ESA CCI)

Following the inclusion of soil moisture as an Essential Climate Variable (ECV), a consor-
tium of research institutes funded by the European Space Agency (ESA) Climate Change
Initiative (CCI) have developed a soil moisture dataset comprising several active and pas-
sive microwave satellite retrieval datasets (ESA CCI Liu et al., 2012; Dorigo et al., 2017;
Gruber et al., 2017). This was in order to provide a complete and consistent soil mois-
ture dataset including both active (scatterometer) and passive (radiometer) microwave
observations. These include the C-band scatterometers on ERS1/2 between 1991-2011,
MetOp’s ASCAT from 2006, and the multi-frequency radiometers on Acqua’s AMSR-E
from 2002, Coriolis Windsat from 2003 (as well as: TRMM-TMI from 1997, DMSP SS-
M/I from 1987 and Nimbus-7/SMMR between 1978-1987; Wagner et al., 2012). Data are
retrieved according to the original satellite speci�cations with temporal retrievals be-
tween 1-8 days and datasets are listed below (3.2). The overall spatial resolution of the
ESA CCI project is upscaled to 50km and 25km and depict a soil moisture depth between
0.5-2 cm. For the purposes of this research version 2.1 of the ESA CCI product has been

43

https://Ipdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
https://Ipdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
https://lpdaac.usgs.gov/


used. Each of the contributing products/sensors are discussed in more detail below and
outlined in Table 3.2.

Table 3.2: List of datasets used for the composite ESA CCI SM dataset and their details.

Sensor Agency Type SM Depth Operational Spatial Temporal

Period Resolution Resolution

ASCAT EUMETSAT Active @ 0.5-2 cm 2007 - 2015 12.5 km ≈ 2 days

5.255 GHz

AMI-WS EUMETSAT Active @ 0.5-2 cm 1991 - 2006 12.5 km ≈ 2 days

5.255 GHz

AMSR-E JAXA Passive @ 0-1 cm 2002 - 2011 25 km ≈ 3 days

6.9, 10.65, 18.7, 23.8, 36.5, 89.0 GHz

AMSR2 JAXA Passive @ 0-1 cm 2012 - 2015 25 km ≈ 3 days

6.9/7.3, 10.65, 18.7, 23.8, 36.5, 89.0 GHz

WindSat NRL Passive @ 2-5 cm 2007 - 2010 25 km ≈ 8 days

6.9, 10.7, 18.7, 23.8, 36.5 GHz

TRMM-TMI NASA / JAXA Passive @ 0-1 cm 1998 - 2002 25 km 1 day

10.7, 19.4, 21.3, 37, 85.5 GHz

DMSP SSM/I NASA DAAC Passive @ 0-7 cm 1987 - 1997 25 km 1 day

19.35, 23.235, 37, 85.5 GHz

Nimbus-7 SMMR NASA DAAC Passive @ 0-7 cm 1978 - 1987 25 km 2 days

6.6, 10.7, 18, 21, 37 GHz

AMI-WS & ASCAT

The Vienna University of Technology’s (TU-Wien) wind scatterometer (AMI-WS) prod-
uct is a soil moisture product that amalgamates the radar backscattering coe�cients as
measured by the European Remote Sensing satellites ERS-1 and ERS-2. The AMI-WS has
the greatest temporal range of all the remote sensing products available, with coverage
from 1991 to mid-2007 (including periods of overlap between the products). This cov-
erage has since been extended to present, with the ASCAT (Advanced SCATterometer;
beginning from 2007) dataset on board the MetOp satellites (technical aspects do not
di�er from AMI-WS; Liu et al., 2011; Albergel et al., 2012). The ERS-1 and ERS-2 Solar
synchronous satellites operate at the 5.255 GHz frequency (C-Band). Together they pro-
vide three radar images of the Earth’s surface with a total swath of about 500 km (50
km spatial resolution; Albergel et al., 2012; de Jeu et al., 2008; Liu et al., 2011). The satel-
lites have a morning/descending overpass (10:30 am local time) and afternoon/ascending
overpass (10:30 pm local time), to produce a daily average measurement. Total revisit
time is 1-7 days (Table 3.2). The TU-Wien dataset models the incidence angle depen-
dency of the radar backscattering signal σ0. From this, the backscattering coe�cients
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are normalised to the referencing angle of 40◦ (Wagner et al., 2012). Surface soil moisture
and the surface water index are derived from the scaling of the normalised backscattered
coe�cients σ0(40◦). SSM and SWI values range between 0% and 100% (0 and 1), where
the lowest/highest values correspond to the driest/wettest conditions. The derived SSM
(SWI) represent the uppermost 2 cm (100 cm) of the soil and is then resampled to a 12.5
km resolution grid using the Discrete Global Grid index (for DGG resampling see ; Sahr
et al., 2002).

AMSR-E/AMSR2

Developed by the Japan Aerospace Exploration Agency (JAXA) the Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) is a twelve-channel, six-frequency,
passive-microwave radiometer system. It measures brightness temperatures at 6.9 GHz,
10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz modi�ed for Aqua and is onboard
the Japanese ADEOS-2 satellite (Njoku, 2004). The spatial resolution of the individual
measurements varies between 5.4 km at 89 GHz to 56 km at 6.9 GHz, however, the mean
resolution is roughly 56 km. AMSR-E has a morning/descending overpass (1:30 am lo-
cal time at the equator) and afternoon/ascending overpass (1:30 pm local time at the
equator), to produce a daily average measurement (Njoku, 2004). The AMSR-E product
ceased operation in 2011 and was replaced by the AMSR2 sensor.

WindSat

Operated by both NASA (National Aeronautics and Space Administration) and NOAA
(National Oceanic and Atmospheric Administration), the WindSat passive-microwave
radiometer operating in 5 discrete channels: 6.8, 10.7, 18.7, 23.8 and 37.0 GHz was set
up for the retrieval of sea-surface wind speed direction and temperature (Gaiser et al.,
2004). All channels are fully polarimetric except the 6.8 and 23.8 GHz channels that have
only dual polarization. The WindSat sensor operates on the Coriolis satellite which is
in a near-polar orbit. WindSat has a morning/descending overpass at 6 am (local time
at the equator) and afternoon/ascending overpass 1:30 pm (local time at the equator),
to produce a daily average measurement. Unlike other radiometers, the WindSat sensor
records observations during both the forward and aft scans. This provides WindSat with
a wider swath than comparable sensors (Gaiser et al., 2004).

3.3.3 Köppen-Geiger Regions

The strength of land-climate feedbacks such as the coupling of soil moisture with tem-
perature is largely dependent on the local climate of a region. As Australia is host to var-
ious climate regions, it is important to de�ne those regions for analysis of locations with
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similar conditions. The Köppen-Geiger climate classi�cations, as proposed by Köppen
(1884), is one such method allow to identify the di�erent regions spatially. The Köppen-
Geiger climate classi�cation scheme, divides climates into �ve main groups (Tropical,
Dry, Temperate, Continental and Polar) each with sub-categories describing the varia-
tion of the climate therein (Köppen, 1884; Kottek et al., 2006; Peel et al., 2007). These
climate regimes are de�ned by thresholds of the mean monthly precipitation, tempera-
ture, and evapotranspiration. Australia is predominately categorised as arid, semi-arid,
temperate, tropical wet or tropical dry (savanna) (see Figure 3.1). Arid climate regions
have a monthly precipitation less than half of their potential evapotranspiration and
semi-arid regions have a monthly precipitation between 50% and 100% of their potential
evapotranspiration (Kottek et al., 2006; Peel et al., 2007) with average annual tempera-
ture above 18◦. The temperate climate regions have an average summer temperatures
above 10◦C and between 3◦C − 18◦C in winter (Kottek et al., 2006; Peel et al., 2007).

Table 3.3: Overview of datasets including: variables recorded, soil depth for which data are represented,
operational period of dataset and spatial and temporal resolution of dataset. Variables used include max-
imum daily temperature (Tx), precipitation (Pr), soil moisture (SM), Soil Water Content (SWC), Fire Ra-
diative Power (FRP), Leaf Area Index (LAI), Normalized Di�erenced Vegetation Index (NDVI), relative
humidity (RH), u & v wind components and the SOI (Southern Oscillation Index)

Datasets Type Variables Soil depth Operational Spatial Temporal Reference

Period Resolution Resolution

AWAP Modelled/in situ Pr, Tx, SM 0-2 cm 1900 - 0.05◦ Daily Jones et al. (2009)

Oznet

in situ SM 0-7 cm 2001 - Station 20-30 min Smith et al. (2012)

Pr 0-30 cm

30-60 cm

60-90 cm

OzFlux in situ SM Table 3.1 2005 - Station 30 min Hawdon et al. (2014)

CosmOz in situ SM, SWI Table 3.1 2010 - Station 1 hour Table 3.1

MODIS Remotely Sensed FRP, LAI, NDVI 2000 - 500m 1-8 days

CMIP-5 Modelled RH, u, v, Tx, Pr 1850 - Table ?? Daily (Taylor et al., 2012)

2100 Monthly

Yearly

ERA-Interim Remotely Sensed RH, u, v, Tx, Pr 1979 - 0.25◦ 3-hourly (Dee et al., 2011)

ESA CCI
Remotely Sensed SM 0.5-2cm (SSM) 1978 - 0.25◦ 1-8 days (Liu et al., 2011)

0-100cm (SWI) 2015 (Dorigo et al., 2017)

(Gruber et al., 2017)

SOI in situ SOI 1876 - Global value Monthly (Ropelewski et al., 1987)

Koeppen- in situ Climate Regions N/A 0.1◦ N/A (Peel et al., 2007)

Geiger

Finally, the di�erence between tropical and savanna climate regions is that during the
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driest months the minimum precipitation is 60 mm for tropical regions and below that
for savanna regions (Kottek et al., 2006; Peel et al., 2007). Historical data of tempera-
ture, precipitation and evapotransporation used to determine the climate regimes are
retrieved from the Global Historical Climatology Network (GHCN-Monthly Version 2).
This is a network of observational stations worldwide extending back to 1950 and up-
dated monthly, of which, 4,844 stations for temperature and 12,396 stations for precipi-
tation are used for calculating the Köppen-Geiger index (Peel et al., 2007).

3.4 Moisture Indices

3.4.1 Standardised Precipitation Index (SPI)

As previously mentioned, the SPI is a commonly used proxy for soil moisture to provide a
high-resolution dataset that is comparable in both time and space (Guttman, 1998; Hayes
et al., 1999). and it can be calculated at di�erent time scales to monitor droughts with
respect to relative water resources and depending on the desired period of soil moisture
memory. Most commonly it is calculated at one, three, six or twelve months. Short to
mid-term de�cits i.e droughts are of particular interest and are indicated through a 3-
or 6-month SPI (McKee et al., 1993). The SPI is calculated from the transformation of a
�tted gamma distribution function that describes a time series of precipitation data with
a standard normalised distribution (z-distribution; Abramowitz et al., 1964; Edwards,
1997). Due to the �tting of a standardised normal distribution to the precipitation time
series, the frequency of events is not dependent on seasonality, allowing for compar-
ative analysis of seasons. However, a drawback to this method is that high-resolution
data are required with a minimum of 30 years to provide a robust distribution (McKee
et al., 1993). Table 3.4 de�nes the SPI values for corresponding drought or �ood charac-
teristics and their occurrence probability as calculated according to the �tted standard
normalised distribution. SPI ranges from 3 to -3, or extremely wet to extremely dry con-
ditions respectively.

More speci�cally, Equation 3.1 describes the cumulative density function (CDF) of the
gamma distribution (Γ), where x and x̄ are the precipitation and mean precipitation from
the time series, respectively, and â and β̂ are the shape and scale parameters, respectively.

G(x) =

∫ x

0

g(x)dx =
1

β̂α̂Γ(α̂)

∫ x

0

xα̂e
−x
β̂ dx (3.1a)

47



with

â =
1

4A

(
1 +

√
1 +

4A

3

)
(3.1b)

and

β̂ =
x̄

â
(3.1c)

and

A = ln(x̄)−
∑
ln(x)

n
(3.1d)

The gamma cumulative distribution function is not de�ned for zero precipitation, and
as such, zero precipitation (under 1 mm) events are removed from the time series and
the resulting gamma distribution is modulated using the probability of this occurrence.
The following equation describes the adjustment to the gamma cumulative distribution
function (G(x)) where q is the probability of zero precipitation. As applied by McKee et
al. (1993, Equation 3.1), the calculated gamma cumulative distribution function is then
transformed into a standard normal distribution for SPI values. This is done simply by
overlaying a standard normal distribution over the top of the gamma CDF and then read-
ing the values from the CDF. Note that this approach is impractical for large datasets, and
an approximate conversion is provided by Abramowitz et al. (1964), as seen in Edwards
(1997) (here, Equation 3.2).

SPI =


−
(
t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

)
if 0 < H(x) ≤ 0.5

+

(
t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

)
if 0.5 <H(x) < 1

(3.2a)

where

H(x) = q + (1− q).G(x) (3.2b)

and

t =



√
ln

[
1

(H(x))2

]
if 0 < H(x) ≤ 0.5

√
ln

[
1

(1−H(x))2

]
if 0.5 <H(x) < 1

(3.2c)
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with

c0 = 2.515517 c1 = 0.802853 c2 = 0.010328

d1 = 1.432788 d2 = 0.189269 d3 = 0.001308

where c0 to c2 and d0 to d2 are empirically derived constants used to approximate the
conversion from the gamma CDF to a normal distribution.

Table 3.4: Precipitation anomaly classi�cation based on SPI values and corresponding event probabilities

SPI Value Category Probability %

2.00 or more Extremely Wet 2.3

1.50 to 1.99 Severely Wet 4.4

1.00 to 1.49 Moderately Wet 9.2

0 to 0.99 Mildly Wet 34.1

0 to -0.99 Mild Drought 34.1

-1.00 to -1.49 Moderate Drought 9.2

-1.50 to -1.99 Severe Drought 4.4

-2 or less Extreme Drought 2.3

3.4.2 Antecedent Precipitation Index (API)

Similar to the SPI, the Antecedent Precipitation Index (API) is an empirical method for
indirectly estimating SM from precipitation output. While the SPI is calculated based on
a �tted distribution of a moving average of the precipitation time series, API provides a
current precipitation-driven SM employing a constant SM depletion rate. API estimates
the current SM by multiplying the previous API by a depletion factor and adding the
previous day’s precipitation. API was initially de�ned by Kohler et al. (1951) to deter-
mine drought conditions and has also been used in various watershed analysis studies
(Equation 3.3; Liu et al., 2011).

APIn = (APIn−1 + Pn−1)e−α∆t (3.3)

where APIn and APIn−1 are the current and previous day’s API, ∆t represents the
time-step of the measurement (in most cases it is equal to 1) and α(day−1) is the inverse
of the characteristic soil moisture depletion (Kohler et al., 1951). As the depletion rate

49



has a considerably large spatial variation due to several factors including soil type, soil
density, vegetation, exposure, hill slope etc. it is further simpli�ed to be a function of
the daily maximum temperature. The API has most recently been calculated using the
form of Equation 3.4 (Crow et al., 2005; Crow et al., 2012; Holgate et al., 2016; Kumar
et al., 2017).

APIn = (γ × APIn−1) + Pn (3.4a)

where

γ = 0.85 + δ(20− Tx) (3.4b)

and

δ = 0.0075

where APIn−1 is modulated by the depletion rate (γ), and Pn is the current day’s pre-
cipitation depth. The depletion rate is calculated using a sensitivity parameter (δ) and an
o�set to the maximum daily temperature (Tx Crow et al., 2005). As API is representative
of soil moisture, values are capped to 50 mm to indicate full saturation (Kumar et al.,
2017).

3.4.3 Keetch-Byram Drought Index (KBDI)

As discussed in Chapter 2, another alternative to SPI is the KBDI (also used in the current
FFDI formulation). The KBDI describes the soil moisture de�cit in the root-zone and
surface litter layers expressed in mm. The soil moisture de�cit is de�ned by Keetch et al.
(1968), ranging from 0 (saturated) to 203.2 mm (severe drought). In essence, the KBDI is
a simple water balance model calculated daily and is expressed as:

dQ =
[203.2−Q]

[
0.968× e0.0875Tmax+1.5552 − 8.3

]
dt

1 + 10.88e−0.001736R
× 10−3 (3.5a)

and

Qn = Qn−1 + dQ (3.5b)

where dQ is rate of change of the index, Q is the KBDI based on the previous day’s calcu-
lations, Tmax is the daily maximum temperature (◦C), R is the mean annual precipitation
(mm), and dt is the time increment (set to 1 day). Keetch et al. (1968) limited the calcu-
lation of drought conditions to periods that consistently exceeded 21◦C with little to no
rainfall. Strong precipitation events can result in negative dQ values and light events
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are generally de�ned as dQ = 0. These thresholds de�ne drought for the case region,
but do not consider varied climate regions and vegetation types. Equation 3.5 is based
on the assumption provided by Keetch et al. (1968) that soil moisture is at �eld capacity
at 203.2 mm of water depth for all soil types and that vegetation density is a function of
the inverse exponent of mean annual precipitation, inferring the rate of moisture loss. It
also assumes that the evaporation rate with time is the exponent of the daily maximum
temperature.

3.4.4 Mount’s Soil Dryness Index (MSDI)

Similarly to the KBDI, Mount’s Soil Dryness Index (MSDI; Mount, 1972) is also an em-
pirically derived cumulative SM de�cit index. However, it di�ers from the KBDI in the
estimation of evapotransporation which is determined through using a vegetation �l-
tration model. The MSDI is essentially a soil moisture model that takes into account
rainfall, run-o�, and interception. The retrieval of vegetation for de�ning evapotrans-
poration is derived using the MODIS leaf area index (LAI) product (MCD15A2H; Myneni,
2015). For each vegetation category, parameters are de�ned for the canopy rainfall in-
terception fraction, the canopy storage capacity, wet evaporation rates, and �ash-runo�
fraction using a linear relationship to LAI as per (Finkele et al., 2006). Regression coef-
�cients used are based on in situ observations of evapotranspiration from capital cities
in the Australian states of Victoria, Tasmania and South Australia. In general MSDI is
given as:

dMSDI

dt
= Peff + ET (3.6a)

where

Peff = rain− interception− runoff (3.6b)

and

ET = aiTmax + bi (3.6c)

where evapotranspiration (ET) is a linear function of maximum daily temperature (Tmax),
and where ai and bi are derived from the relationship between mean monthly pan evap-
oration and mean monthly maximum temperature (Finkele et al., 2006). As MSDI is used
operationally in various states in Australia in place of KBDI in the formulation of FFDI,
MSDI is scaled to between 0 mm and 203.2 mm, where 0 mm is considered the saturated
moisture content and 203.2 mm considered as extremely dry.
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3.5 McArthur Forest Fire Danger Index (FFDI)

As mentioned in Chapter 2, in Australia, the McArthur FFDI is used operationally and
will be also be used here to describe �re danger. The FFDI quanti�es �re danger with a
scale between 0 and 100+ for low to catastrophic risk respectively (see Table: 3.5). It was
originally derived empirically by (McArthur, 1967; Nobel et al., 1980) and is expressed as:

FFDI = 2D 0.987e[−0.45 + 0.0338T − 0.0345RH + 0.0234 v] (3.7)

DF =
0.19 [KBDI + 104] [DSLR + 1]1.5

3.52 [DSLR + 1]1.5 + LR− 1
(3.8)

Table 3.5: McArthur Forest Fire Danger categories and their index values.

Fire Danger Rating FFDI

Low - Moderate 0-11

High 12-24

Very High 25-49

Severe 50-74

Extreme 75-99

Catastrophic 100+

where DF is the Drought factor, given as a number between 0 and 10, T is the daily max-
imum temperature (◦C), RH is daily minimum relative humidity, v is the daily-mean
wind speed, LR (mm) is the total rainfall during the previous rain event and KBDI (mm)
is the amount of rain needed to restore the soil moisture content to a maximum �eld
capacity of 203.2 mm (constant depth) and a minimum of 0 m m(Nobel et al., 1980).
As with Liu et al. (2003), D can be derived empirically as provided by McArthur (1967)
or through a more recent simpli�cation by Gri�ths (1998). Both of these formulae re-
quire actual soil moisture content, limiting resolution and the scalability of the index.
Commonly the soil moisture de�cit used for calculating the drought factor is calculated
either from the KBDI (Keetch et al., 1968) or from Mount’s Soil Dryness Index (MSDI)
(Mount, 1972). It should be noted that values in excess of 100 were only included in the
classi�cations (catastrophic) in response to the 2009 “Black Saturday Fires” in south-east
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Australia. Prior to this, a maximum value of 100 was set for extreme �re conditions in
1939 (Nobel et al., 1980).

3.6 Statistical Methods

In order to compare daily time steps of the API, SPI, KBDI, MSDI to remotely sensed
soil moisture, in situ soil moisture observations were converted to daily averages and
scaled using a standard min/max normalisation (between 0-1) for each time series. As
this rescaling method can be sensitive to outlier observations, each observational soil
moisture dataset time-series has been visually inspected to remove erroneous measure-
ments (negative values, values exceeding realistic maxima, etc.). Any variable from
which anomalies have been computed used a 31-day sliding mean, similar to the cal-
culation of hot days and to studies such as; Perkins et al. (2012). The magnitude and sign
of the relationship between datasets are compared through calculating the Pearson cor-
relation. Correlation coe�cients were then compared using several methods, including
Taylor diagrams which display the correlation coe�cient, a normalised standard devia-
tion and an unbiased RMSD (Root Mean Squared Di�erence). The Pearson correlation
coe�cients were calculated using Equation 3.9:

r =

∑
i

(Xi − X̄)(Yi − Ȳ )√∑
i

(Xi − X̄)2
∑
i

(Yi − Ȳ )2
(3.9)

where r represents the correlation coe�cient, X is the �rst variable and Y is the second
variable. Typically, correlation coe�cients are spatially averaged by taking the mean
over a given area (Perkins, 2015; Holgate et al., 2016). However, this can lead to a large
sample distribution bias depending on the number of correlation coe�cients to be aver-
aged. Corey et al. (1998), suggest using the Fisher z-transformation to normalise values,
then average these values before converting those back into the familiar correlation co-
e�cients. This study presents �ndings using this method, calculated using:

z′ = 0.5ln
1 + r

1− r
(3.10a)

and

rz′ =
e2.z̄′ − 1

e2.z̄′ + 1
(3.10b)

where r is the correlation coe�cient, and z’ is the Fisher z-transformation value. Fi-
nally, signi�cance testing of the correlation coe�cients is also presented using a stricter
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approach than that of using the 5% level (used for stippling signi�cance in maps). Con-
ventionally, in order to evaluate the signi�cance of a correlation, a nominal threshold of
5% is chosen, a value above which the probability of the resultant randomly occurring
correlation should not exceed. The statistical power of this is greatly reduced due to the
discrete nature of the test statistic and Wilks (2006) suggests using the false discovery
rate (FDR) threshold for signi�cance testing. The FDR method calculates a single global
threshold based on the distribution of p-values in a �eld obtained from multiple local sig-
ni�cance tests. The �eld signi�cance criteria are met if the local test is below this global
threshold. The FDR threshold is calculated using Equation 3.11 for each signi�cance test.

ρ∗FDR = max
i=1,...,N

[
ρ(i) : ρ(i) > (

i

n
)αFDR

]
(3.11)

where, αFDR is the nominal threshold, and the threshold ρ∗FDR for rejecting the local
null hypotheses is the largest ρi that is no larger than the fraction of αFDR speci�ed by
i/n.
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Statistical Methods - CHAPTER SUMMARY

Chapter Summary

This chapter presented the methodologies and datasets that are common to analysis
throughout the following chapters. More speci�cally, the speci�cations and details of
the in situ soil moisture datasets from the OzNet, OzFlux and CosmOz networks, the
ERA-Interim and CMIP5 modelled datasets, the MODIS and ESA CCI remotely sensed
datasets, and soil moisture indices, namely, the API, SPI, KBDI and MSDI derived from
the AWAP gridded observationally based datasets were all outlined in this chapter. The
following chapters will explore the relationships discussed in Chapter 2 using the datasets
and methods introduced here. Speci�c methods not discussed in this chapter will be out-
lined in further detail at the beginning of each chapter where pertinent.
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CHAPTER4
Comparison of Soil Moisture Proxies

Across Australia

Overview This chapter investigates the relationship between soil moisture and
various moisture precipitation-driven indices and models in Australia. This is done at
both a monthly and daily scale for observational (Cosmic-ray detection network, Time-
domain re�ectometer network, and Frequency-domain sensor networks) and gridded
datasets. More speci�cally, the degree of association between soil moisture derived from
the CosmOz, OzNet and OzFlux sites with the API, SPI, KBDI and MSDI moisture in-
dices is compared in this chapter in context with regional soil and climatological char-
acteristics. Furthermore, this chapter then compares these indices against the remotely
sensed ESA CCI soil moisture product, and AWAP’s surface soil moisture product spa-
tially across Australia.
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Introduction

4.1 Introduction

The importance of soil moisture on the climate system and as an environmental vari-
able has been highlighted by its inclusion into the GCOS (Global Observing System for
Climate) Essential Climate Variable (ESV) index under land interactions (GCOS, 2010).
Not only is soil moisture an important variable in land dynamics such as subsurface
�ow, in�ltration, and groundwater recharge as well as in�uencing photosynthesis and
evapotranspiration through vegetation moisture, but it is also a key component in land-
atmosphere feedbacks associated with the hydrological cycle at both weather and cli-
mate time-scales (Seneviratne et al., 2010). As highlighted in Chapter 2 and following in
Chapter 5.1, soil moisture is known to in�uence the energy partitioning between sensible
and latent heat from the land into the atmosphere, and as a consequence a�ecting lo-
cal temperature and precipitation extremes (Seneviratne et al., 2010; Fischer et al., 2007;
Hirschi et al., 2010). Changes in soil moisture can have a signi�cant socio-economic ef-
fect both directly through water resource management, agricultural productivity, forest
and ecosystem health, as well as indirectly through exacerbated temperature extremes
and their associated risks (Hirschi et al., 2014; Han et al., 2014; Herold et al., 2016).

As soil moisture in�uences multi-scale feedbacks (Seneviratne et al., 2010) as well as
land-atmosphere interactions (Brocca et al., 2011; Albergel et al., 2012), it is essential
to understand how it varies both spatially and temporally. In doing so, the accuracy
of predictions can be improved in order to better mitigate potential risks (Draper et al.,
2009). To this end soil moisture is currently used in land surface model assimilation (van
Dijk et al., 2014) including agricultural drought models (e.g. Han et al., 2014), numerical
weather forecasting (e.g. Draper et al., 2009; Dharssi et al., 2011), �ood forecasting (e.g.
Wanders et al., 2014), forest �re danger forecasting (e.g. Liu et al., 2003; Finkele et al.,
2006; Bartsch et al., 2009), and long-term hydrological trends and drought monitoring
and evaluation (e.g. Heim, 2002; Teuling et al., 2006; Hubbard et al., 2007; van Dijk et
al., 2013; Perkins et al., 2015). Soil moisture is also used extensively in the assessment
of hydrological feedbacks in CMIP5 projections (e.g. Seneviratne et al., 2013) and other
climate studies.

Soil moisture is available through various products, typically via observational networks
such as the OzNet, OzFlux and CosmOz (Chapter 3.1) or via remotely sensed products
such as the ESA CCI dataset (Liu et al., 2011), as well as through modelled data such as
AWRA-L (Australian Water Resource Assessment Landscape model) or CABLE (Com-
munity Atmosphere Biosphere Land Exchange). Each of these has varying advantages
and disadvantages due to individual temporal and spatial resolutions. Alternatively, soil
moisture can be derived using; water balance indices where high resolution data are
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unavailable. Commonly-used indices include the Antecedent Precipitation Index (API;
Kohler et al., 1951), Palmer Drought Severity Index (PDSI; Palmer, 1965), Keetch-Byram
Drought Index (KBDI; Keetch et al., 1968), Mount’s Soil Dryness Index (MSDI; Mount,
1972), Surface Water Supply Index (SWSI; Shafer et al., 1982), Standardized Precipitation
Index (SPI; McKee et al., 1993), Vegetation Condition Index (VCI; Liu et al., 1996), Soil
Moisture Index (SMI; Hubbard et al., 2007), and the Standardized Precipitation Evapo-
ratranspiration Index (SPEI; Vicente-Serrano et al., 2010), among many more (further
detail has been documented in Chapter 2.2 and summarised in Table 2.1).

A number of previous studies have compared several of the aforementioned remotely
sensed and modelled products with in situ soil moisture globally and in Australia (e.g.
Albergel et al., 2012; Brocca et al., 2011; Draper et al., 2009; Hawdon et al., 2014; Liu et
al., 2011; Dorigo et al., 2015). Although there is a general agreement between products,
these studies limit analysis to similar products compared against in situ measurements
located primarily in the south-east of Australia using the OzNet network. Often these
comparisons occur using a relatively short observational period or utilise very coarse
resolution data. Both Su et al. (2013), Holgate et al. (2016), and Kumar et al. (2017), pro-
vide an extended analysis using three networks in Australia (OzNet, OzFlux, and Cos-
mOz) comparing various types of products, but in both cases, detail is limited by both
the spatial and temporal resolution as well as through a sub-selection of available sites.
Additionally, the latter two studies have not provided a detailed analysis in context with
known di�erences in the climate regimes, vegetation and soil types across Australia.

This chapter compares the API, SPI, KBDI, MSDI precipitation-based moisture indices,
the remotely sensed ESA CCI product, and AWAP’s surface soil moisture product. Gen-
erally, studies have compared a number of these products over a subset of the available
time series (Holgate et al., 2016; Kumar et al., 2017). However, this chapter builds on pre-
vious comparisons using all three in situ networks as a reference for the entire available
time range. For in situ networks, this is between 2001 and 2015 and between 1979-2015
for the ESA CCI product. Furthermore, comparisons are not only analysed at in situ
locations but also for gridded at 25 km resolution. This provides a spatially more con-
sistent and detailed analysis of the association between products under various climate
regimes, vegetation, and soil types.

4.2 Data and Methodology

Direct comparison between the in situ, remotely sensed and modelled datasets is chal-
lenging due to the systematic di�erences between each data source. Measurements di�er
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in terms of the temporal and spatial resolutions and observational depths measured. As
discussed in Chapter 3.1, soil moisture measured from the OzNet, OzFlux and CosmOz
networks vary in observation depth, ranging from the surface soil moisture of between
0-5 cm or 0-10 cm to a much deeper layer between 0-200 cm (using several measure-
ments). In addition to this, due to the technical aspects of CosmOz, measurements are
considered as variable estimates usually between 0-30 cm. Typically, remotely sensed
moisture products have an observational depth of between 0-2 cm to 0-5 cm. Soil mois-
ture measurements also di�er in their sampling frequency across the three networks,
and range from 20 min to 30 min in the OzFlux and OzNet networks, to hourly in the
CosmOz network. For comparable analysis with the modelled AWAP dataset, daily pre-
cipitation averages are calculated between 9 am - 9 am. AWAP provides gridded data at
5km resolution spatially for Australia for several variables including precipitation, tem-
perature, and soil moisture. Regions that recorded less than 1 mm precipitation over a
50 year period were masked from the analysis. For comparison with the ESA CCI de-
rived soil moisture, AWAP derived variables and indices were up-scaled from 5 km to
25 km resolution to match the ESA CCI product. This was done using a bilinear inter-
polation from the post-processed datasets. Prior to this, where not previously provided,
each product has been converted to volumetric units (m3/m3) of soil moisture then
normalised (min/max) to provide values between 0 and 1 for direct comparison:

zi =
xi −min(x)

max(x)−min(x)
(4.1)

Di�erent sources of uncertainty and error are associated with each di�erent data source
preventing an absolute agreement between the di�erent products (Brocca et al., 2011;
Draper et al., 2013). In order to measure the association between moisture indices and
the reference (both in situ and remotely sensed) soil moisture, three classical metrics
were applied, similarly to other soil moisture studies (Draper et al., 2013; Albergel et al.,
2013). These include i) the Pearson correlation coe�cient (r; as calculated by Eq. 3.9),
ii) the bias, and iii) the unbiased root mean squared error/di�erence (RMSE or RMSD).
The equations for the calculation of the RMSE and the bias are given as follows (Brown,
1947; Chat�eld, 1988; Armstrong et al., 1992; Brocca et al., 2011; Draper et al., 2013):

RMSE =

√√√√ n∑
i=1

(xi − yi)2

n
(4.2)

bias =
1

n

n∑
i= 1

(xi − yi) (4.3)
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where n is the number of data pairs between the reference (x) and the index (y) used,
and xi and yi are the values at individual points for each dataset. Simply put, these are a
measure of how di�erent the two comparable datasets are in both magnitude and sign.

Similarly, these metrics were also determined to evaluate temporal anomalies of each
data set. This is done in order to highlight the agreement of soil moisture and remove
any seasonality from the dataset (Rüdiger et al., 2009; Brocca et al., 2011; Albergel et al.,
2013; Draper et al., 2013; Dorigo et al., 2015) which particularly a�ects the upper soil
layer (Albergel et al., 2013). Generally, temporal anomalies within the time series are
calculated by determining the di�erence between a single measurement in time and its
reference mean. However, as mentioned, each dataset to be compared contains vary-
ing temporal periods. Therefore, anomalies of varying temporal periods can be calcu-
lated using a moving average for each individual dataset. Typically, soil moisture studies
(Brocca et al., 2011; Albergel et al., 2013; Draper et al., 2013; Perkins, 2015; Dorigo et al.,
2015) de�ne anomalies using either 29, 31 or a 35-day sliding mean (i.e. 14, 15 or 17 days
plus/minus). Provided at least �ve measurements within this range are available, soil
moisture anomalies are calculated here using a sliding window of 31-days correspond-
ing to the time interval (t± 15 days). The di�erence between the soil moisture estimate
at any given day i and the sliding mean is then scaled to the standard deviation of the
reference data within the time window. The dimensionless anomaly (anom) is given by
Eq. 4.4

anomi =
SMi − ¯SMF

σ[SMF ]
(4.4)

where F = [i− 15, i+ 15] and σ is the standard deviation of the dataset. As de�ned in
Chapter 3.6, signi�cance testing of correlation coe�cients is produced using the False
Discovery Rate threshold, and averages of correlations are computed using the Fisher
z-transformation value.

4.2.1 API Calibration

Similarly to Kumar et al. (2017), daily API as de�ned in Chapter 3.4.2 is capped to 50
mm indicating a fully saturated surface soil layer (Kumar et al., 2017). However, this
may not be applicable for comparison for all soil types and locations across Australia,
and as such, it is necessary to identify the e�ect of changing this metric has on API
and its relationship to soil moisture. For this, the normalised correlation coe�cients
between API and in situ soil moisture (from the OzNet, OzFlux and CosmOz networks)
were compared with limiting values set between 0 and 150 mm.
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Figure 4.1: Comparison of normalised correlation coe�cients between soil moisture and API with a
limiting factor varying between 0 and 150 mm. (a) each in situ site compared against each other, (b)
averages of the CosmOz, OzFlux and OzNet networks. (c) averages across Köppen-Geiger regimes. (d)
averages across soil types. (b-d) also include the mean and 0.25 to 0.75 con�dence interval.

Figure 4.1 shows correlation coe�cients for each site, as well as averages across the
networks, the Köppen-Geiger regimes as well as the soil types. Generally, maximum
correlation coe�cients are achieved between 10-75 mm depending on location. As each
network spans a variety of climate regimes and soil types, each network on average
exhibits similar maximum coe�cients between 20-30 mm. When comparing various
soil types, coarser soils such as sand and sandy-loam have much lower limiting values
than �ner soils such as loam and clay. Semi-arid and temperate regimes typically have
maxima at a lower limiting value indicating that soils in these regions are coarser with
higher �ltration rates, conversely, savanna and arid regions typically have much higher
limiting values. In each case correlation coe�cients decrease substantially at limiting
values greater than 75 mm. For the purpose of this chapter and future chapters, API is
limited to 50 mm, as this just exceeds the expected maxima in each case. This allows
for consistency when comparing in situ sites with gridded data across Australia, as grid
cells span various soil types due to the coarseness of the available spatial resolution. This
also allows for direct comparison to other studies which use 50 mm as the limit, namely,
Holgate et al. (2016) and Kumar et al. (2017).
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4.2.2 SPI Temporal Scales

SPI is calculated at various temporal scales and is typically calculated using monthly
data with a scale of between 1 and 24 months. However, for the purpose of this study,
SPI has also been calculated using daily values. Here, SPI at 7-, 14-, 30-, and 60-days
as well as at 1-, 3-, 6-, and 12-months have been calculated and compared across for all
available in situ sites for daily and monthly data, respectively. That is, SPI is calculated
based on the sum of the previous 7-day to 12-months (depending on desired temporal
scale) cumulative precipitation record. Both, 14- and 30-day SPI have the largest cor-
relation coe�cients to soil moisture with values of 0.595 and 0.574 (refer to Table 4.1).
Similarly, normalised 3-, 6- and 12-month SPI were calculated and correlated to the in
situ normalised soil moisture. Both 3-month and 6-month (especially for the OzNet and
CosmOz networks) SPI generally show higher correlation coe�cients across the in situ
sites than the longer and shorter temporal scale of 1- and 12- months. As SPI is calculated
using a �tted distribution based on historical di�erences, individual precipitation events
appear to have little e�ect on values, whereas more weight is given to persistent precip-
itation events. Both very long and very short temporal scales of SPI have much lower
correlation coe�cients with their respective daily or monthly soil moisture. 3-month
SPI is commonly used as a proxy for soil moisture, for example, Mueller et al. (2012) and
Hirschi et al. (2014) who all use 3-month SPI in their comparison with hot days. Results
are also in agreement with studies by Hallack-Alegria et al. (2012) and Jung et al. (2012)
that indicate that a 3-month SPI best correlates to soil moisture.

Table 4.1: Correlation coe�cients between SPI and soil moisture at various temporal scales, averaged
across multiple in situ sites.

Length OzNet CosmOz OzFlux Overall

7-Day 0.618 0.555 0.547 0.573
14-Day 0.646 0.577 0.561 0.595
30-Day 0.611 0.567 0.545 0.574
60-Day 0.559 0.584 0.521 0.554

1-Month 0.417 0.329 0.321 0.356
3-Month 0.479 0.422 0.288 0.396
6-Month 0.462 0.437 0.084 0.328
12-Month 0.357 0.384 0.266 0.336
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Results

4.3 Results

4.3.1 OzNet, CosmOz and OzFlux in situ Sites

KBDI (Keetch-Byram Drought Index), MSDI (Mount’s Soil Dryness Index), API (An-
tecedent Precipitation Index) and SPI (Standardized Precipitation Index) derived from
5km resolution AWAP precipitation data as well as AWAP’s soil moisture data between
2000 and 2015 were compared against in situ soil moisture from 64 sites from the OzNet,
CosmOz and OzFlux networks (full details regarding sites is provided in Table 3.1). Ta-
ble 4.3 displays a full list of the Pearson correlation coe�cient, the RMSE, the bias, the
temporal period, and the number of observations used for each of the in situ sites. As
it is di�cult to compare sites, networks and the index used in this format, Taylor plots
(Figure 4.2) were produced for both daily and monthly data. This displays the correlation
statistics for each in situ site graphically.

Shown in Figure 4.2, there is a large variation between the correlation statistics across in
situ sites, however, indices at each site generally fall within two normalised standard de-
viations of the reference. On average API best correlates to the observed daily (monthly)
soil moisture with a coe�cient of 0.72 (0.78) compared to 0.69 (0.68), 0.60 (0.72), 0.59
(0.78) and 0.46 (0.40) for MSDI, s0, KBDI and SPI, respectively (Table 4.2). Correlation
coe�cients are typically higher for monthly data than daily data. This is to be expected
as daily variations and the e�ects of soil moisture memory are minimised over this scale
and is evident in results by the lower observed RMSE and biases. On average KBDI
shows a large bias towards wet conditions as does MSDI and SPI, albeit both to a lesser
degree. Conversely, s0 tends towards drier conditions with API having either minimal or
a slight dry bias to observed soil moisture. When comparing monthly and daily results,
there is a reversal of the bias for MSDI, SPI and s0 (Table 4.2). SPI used in this analysis is
based on a soil moisture memory from the preceding 14-days precipitation for daily data
and for monthly SPI, it is based on the preceding 3-months precipitation. As mentioned
previously, SPI is typically calculated using a memory of 3-months (the temporal period
associated with hydrological droughts) when comparing to soil moisture and is usually
calculated only on the monthly scale. However, for the purpose of this study, 14-day
daily data has also been produced in order to determine if SPI can be computed at the
daily scale and compared with other daily precipitation-based indices. Both KBDI and
MSDI intrinsically include a soil moisture memory component as does API as discussed
in Chapters 2 and 3. This partially explains the di�erence in the observed bias. Each of
KBDI, MSDI, and SPI overestimate soil moisture compared to s0 and API. API tends to
have a far smaller bias and a more direct relationship to any given day’s precipitation,
owing to a smaller soil moisture memory than the other indices.
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Generally, there is a much higher correlation for each index for the OzNet sites com-
pared to the CosmOz and OzFlux sites, this is mostly due to the fact that the temporal
coverage of the OzFlux and CosmOz sites are very limited, usually, only 1 to 5 years
compared to up 15 years for OzNet sites. On average for each index, there is also a
larger bias and RMSE for OzFlux and CosmOz sites compared to OzNet sites. This dif-
ference is considerably less when comparing the correlation coe�cients for anomalous
data. As the soil moisture anomaly was calculated using the di�erence from a sliding
31-day mean (±15days), the e�ect of a limited temporal coverage is somewhat negated.
Again API correlates best to in situ soil moisture, however, each of the other indices
shows improved correlation coe�cients. Several sites appear to have anomalously low
correlation coe�cients predominately within the OzFlux sites including Cow Bay, Nor-
win, Cumberland Plain and Calperum. For instance, Cow Bay is located in a rainforest,
in which the soil moisture is observed below a deep vegetation mat. This may contribute
to the lower average correlation coe�cients and also di�erences in bias and RMSE seen
between networks. However, di�erences in measurement depth, soil type and metrics,
and climate regimes are also expected to contribute to observed di�erences. These are
further examined in the following sections.

Table 4.2: Correlation statistics between observational soil moisture and indices/models at CosmOz,
zFlux, OzNet in situ sites for both daily and monthly data.

KBDI MSDI API SPI AWAP-s0 AWAP-ss ESA CCI

Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly

CosmOz

Correlation 0.68 0.75 0.74 0.81 0.73 0.80 0.37 0.43 0.64 0.72 0.75 0.84 0.72 0.64

RMSE 0.44 0.43 0.28 0.26 0.20 0.15 0.26 0.39 0.22 0.20 0.24 0.22 0.16 0.13

BIAS 0.38 0.39 0.18 0.18 -0.02 -0.02 0.19 0.30 -0.17 -0.16 0.07 0.07 0.08 0.07

OzFlux

Correlation 0.62 0.68 0.71 0.75 0.70 0.74 0.36 0.32 0.60 0.68 0.67 0.73 0.60 0.58

RMSE 0.35 0.34 0.27 0.24 0.24 0.20 0.29 0.29 0.29 0.27 0.26 0.25 0.23 0.19

BIAS 0.25 0.25 0.11 0.11 -0.08 -0.08 0.14 0.06 -0.22 -0.21 0.02 0.02 0.01 -0.01

OzNet

Correlation 0.58 0.62 0.73 0.77 0.79 0.82 0.51 0.41 0.70 0.77 0.74 0.80 0.75 0.67

RMSE 0.33 0.31 0.21 0.19 0.20 0.18 0.26 0.36 0.28 0.26 0.21 0.18 0.17 0.14

BIAS 0.21 0.22 0.05 0.05 -0.12 -0.11 0.16 0.26 -0.20 -0.21 -0.04 -0.09 -0.04 -0.04
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Figure 4.2: Taylor plots of correlation coe�cients between daily SPI API, MSDI, KBDI as well as AWAP
soil moisture with in situ soil moisture data from OzNet, CosmOz and OzFlux sites between 2000 and 2015.
(a) normalised daily soil moisture. (b) normalised daily anomalous soil moisture. (c) normalised monthly
soil moisture.
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Table 4.3: Summary of correlation, RMSE, Bias, as well as the number of observations used and the
temporal period of data used, for in situ soil moisture against each soil moisture indices (KBDI, MSDI,
API, SPI , AWAP s0, AWAP ss and ESA CCI soil moisture). Data have been normalised between 0 - 1 for
direct comparison.

Site
Correlation RMSE Bias

Period Obs
KBDI MSDI API SPI s0 ss ESA KBDI MSDI API SPI s0 ss ESA KBDI MSDI API SPI s0 ss ESA

Murrumbidgee_1 0.47 0.57 0.67 0.57 0.48 0.51 0.63 0.37 0.22 0.28 0.19 0.37 0.36 0.18 0.26 -0.03 -0.22 0.06 -0.32 -0.30 -0.00 14/09/01 - 31/05/11 3579

Murrumbidgee_2 0.60 0.68 0.74 0.54 0.52 0.75 0.56 0.37 0.19 0.23 0.20 0.33 0.18 0.19 0.30 -0.00 -0.17 0.07 -0.27 -0.08 -0.01 14/09/01 - 31/05/11 3579

Murrumbidgee_3 0.51 0.61 0.75 0.48 0.57 0.67 0.63 0.39 0.23 0.21 0.26 0.32 0.22 0.19 0.29 0.06 -0.14 0.17 -0.25 -0.14 -0.07 15/09/01 - 31/05/11 3021

Murrumbidgee_4 0.62 0.78 0.79 0.62 0.66 0.78 0.78 0.27 0.18 0.27 0.25 0.35 0.24 0.22 0.13 -0.07 -0.21 0.13 -0.27 -0.17 -0.14 16/09/01 - 31/05/11 3578

Murrumbidgee_5 0.53 0.77 0.81 0.65 0.79 0.75 0.75 0.22 0.20 0.26 0.23 0.29 0.25 0.19 0.02 -0.11 -0.21 0.15 -0.23 -0.19 -0.11 28/09/01 - 28/02/11 3473

Murrumbidgee_6 0.67 0.78 0.68 0.56 0.67 0.68 0.70 0.22 0.15 0.23 0.22 0.25 0.24 0.16 0.11 -0.05 -0.16 0.12 -0.18 -0.17 -0.04 28/09/01 - 31/05/11 3565

Murrumbidgee_7 0.69 0.80 0.68 0.53 0.53 0.79 0.66 0.19 0.23 0.32 0.23 0.39 0.28 0.28 0.02 -0.15 -0.26 0.08 -0.32 -0.22 -0.20 29/09/01 - 31/05/11 3564

Yanco_1 0.43 0.67 0.79 0.52 0.83 0.60 0.80 0.26 0.16 0.19 0.30 0.20 0.21 0.15 0.12 0.03 -0.13 0.24 -0.14 -0.13 -0.07 28/12/03 - 31/05/11 2710

Yanco_2 0.38 0.64 0.84 0.54 0.88 0.61 0.74 0.29 0.18 0.20 0.27 0.21 0.23 0.18 0.15 -0.02 -0.15 0.18 -0.16 -0.14 -0.08 17/01/04 - 31/05/11 2690

Yanco_3 0.53 0.74 0.77 0.54 0.71 0.73 0.76 0.28 0.15 0.21 0.23 0.27 0.19 0.15 0.17 -0.04 -0.15 0.13 -0.21 -0.12 -0.07 29/09/01 - 31/05/11 3564

Yanco_4 0.45 0.67 0.83 0.58 0.85 0.58 0.79 0.26 0.17 0.21 0.25 0.25 0.23 0.17 0.13 -0.00 -0.17 0.17 -0.20 -0.14 -0.09 22/12/03 - 31/05/11 2716

Yanco_5 0.57 0.71 0.82 0.58 0.86 0.69 0.81 0.28 0.15 0.20 0.24 0.22 0.24 0.16 0.18 -0.02 -0.15 0.16 -0.18 -0.17 -0.09 10/12/03 - 31/05/11 2728

Yanco_6 0.51 0.64 0.64 0.39 0.67 0.67 0.71 0.27 0.16 0.17 0.32 0.17 0.15 0.13 0.16 0.08 -0.09 0.27 -0.10 -0.03 -0.01 22/12/03 - 31/05/11 2624

Yanco_7 0.52 0.69 0.79 0.56 0.81 0.69 0.80 0.27 0.18 0.24 0.26 0.26 0.24 0.18 0.10 -0.02 -0.18 0.16 -0.20 -0.16 -0.10 18/12/03 - 31/05/11 2627

Yanco_8 0.55 0.67 0.81 0.59 0.78 0.73 0.80 0.32 0.21 0.22 0.28 0.31 0.28 0.20 0.18 -0.00 -0.14 0.16 -0.21 -0.17 -0.08 12/12/03 - 31/05/11 2633

Yanco_9 0.52 0.68 0.79 0.55 0.81 0.63 0.80 0.27 0.20 0.28 0.24 0.28 0.26 0.21 0.04 -0.07 -0.23 0.11 -0.23 -0.18 -0.14 18/12/03 - 31/05/11 2627

Yanco_10 0.61 0.71 0.80 0.56 0.81 0.67 0.79 0.28 0.16 0.17 0.26 0.21 0.21 0.13 0.18 0.02 -0.11 0.20 -0.15 -0.14 -0.02 10/01/04 - 31/05/11 2604

Yanco_11 0.68 0.78 0.81 0.60 0.84 0.66 0.83 0.27 0.16 0.14 0.35 0.16 0.18 0.12 0.18 0.08 -0.07 0.30 -0.09 -0.08 0.03 09/01/04 - 31/05/11 2605

Yanco_12 0.63 0.74 0.84 0.59 0.81 0.72 0.83 0.26 0.15 0.17 0.29 0.21 0.19 0.12 0.15 0.01 -0.12 0.23 -0.16 -0.12 -0.02 12/12/03 - 31/05/11 2633

Yanco_13 0.31 0.56 0.72 0.49 0.74 0.56 0.68 0.22 0.20 0.24 0.22 0.27 0.27 0.19 -0.01 -0.10 -0.19 0.13 -0.22 -0.21 -0.11 12/12/03 - 31/05/11 2633

Kyeamba_1 0.57 0.66 0.82 0.48 0.61 0.75 0.69 0.40 0.28 0.18 0.25 0.33 0.18 0.18 0.31 0.16 -0.07 0.15 -0.26 -0.05 -0.05 16/11/01 - 31/05/11 3516

Kyeamba_2 0.63 0.79 0.80 0.45 0.56 0.88 0.78 0.39 0.21 0.18 0.28 0.31 0.15 0.15 0.31 0.12 -0.09 0.18 -0.23 -0.10 -0.01 17/11/01 - 28/02/11 3423

Kyeamba_3 0.66 0.81 0.74 0.41 0.49 0.87 0.76 0.40 0.23 0.19 0.29 0.30 0.14 0.16 0.32 0.15 -0.07 0.19 -0.22 -0.08 0.01 17/11/01 - 31/05/11 3515

Kyeamba_4 0.62 0.74 0.67 0.41 0.49 0.80 0.70 0.44 0.27 0.20 0.27 0.24 0.17 0.15 0.36 0.19 -0.04 0.21 -0.18 0.00 0.04 16/11/01 - 31/05/11 3516

Kyeamba_5 0.66 0.85 0.80 0.47 0.60 0.94 0.81 0.38 0.19 0.17 0.28 0.29 0.11 0.14 0.29 0.12 -0.08 0.17 -0.21 -0.04 -0.01 15/11/01 - 28/02/11 3425

Kyeamba_6 0.54 0.71 0.77 0.44 0.58 0.78 0.74 0.46 0.25 0.15 0.31 0.24 0.13 0.15 0.39 0.18 -0.03 0.25 -0.17 -0.03 0.05 06/11/03 - 31/05/11 2762

Kyeamba_7 0.42 0.57 0.84 0.49 0.70 0.68 0.72 0.45 0.28 0.17 0.29 0.31 0.21 0.18 0.33 0.14 -0.09 0.17 -0.23 -0.08 0.02 06/11/03 - 31/05/11 2762

Kyeamba_8 0.55 0.73 0.76 0.53 0.63 0.81 0.74 0.45 0.25 0.14 0.34 0.20 0.13 0.18 0.38 0.19 -0.01 0.29 -0.11 0.02 0.10 06/11/03 - 31/05/11 2577

Kyeamba_10 0.44 0.63 0.69 0.34 0.58 0.70 0.75 0.39 0.21 0.22 0.28 0.30 0.20 0.16 0.27 0.07 -0.13 0.16 -0.22 -0.09 0.02 07/12/03 - 31/05/11 2546

Kyeamba_11 0.55 0.80 0.78 0.37 0.67 0.78 0.83 0.31 0.15 0.20 0.29 0.28 0.22 0.13 0.20 0.01 -0.13 0.19 -0.21 -0.15 -0.02 07/11/03 - 31/08/09 2123

Kyeamba_12 0.63 0.77 0.79 0.55 0.69 0.81 0.71 0.40 0.21 0.13 0.33 0.18 0.12 0.16 0.33 0.15 -0.03 0.30 -0.12 -0.00 0.08 06/11/03 - 31/05/11 2762

Adelong_1 0.81 0.86 0.87 0.38 0.53 0.65 0.73 0.34 0.26 0.18 0.27 0.37 0.23 0.19 0.29 0.20 0.00 0.06 -0.27 0.02 -0.03 02/12/01 - 31/05/11 3500

Adelong_2 0.70 0.75 0.89 0.44 0.59 0.83 0.71 0.38 0.32 0.19 0.27 0.35 0.22 0.20 0.30 0.23 0.03 0.08 -0.26 0.10 -0.02 02/12/01 - 31/05/11 2018

Adelong_3 0.66 0.73 0.87 0.46 0.68 0.55 0.74 0.27 0.22 0.26 0.20 0.41 0.28 0.21 0.13 -0.01 -0.20 -0.05 -0.38 -0.09 -0.15 02/12/01 - 31/05/11 3220

Adelong_4 0.62 0.69 0.84 0.47 0.69 0.52 0.67 0.45 0.35 0.20 0.23 0.19 0.23 0.18 0.37 0.25 0.04 0.17 -0.14 0.01 0.08 02/12/01 - 31/05/11 3591

Adelong_5 0.72 0.81 0.83 0.40 0.61 0.92 0.70 0.36 0.24 0.18 0.26 0.31 0.14 0.19 0.27 0.15 -0.05 0.11 -0.22 0.05 0.03 26/11/01 - 28/02/11 3229

Baldry 0.64 0.84 0.74 0.51 0.65 0.80 0.81 0.44 0.11 0.19 0.28 0.24 0.19 0.12 0.39 0.00 -0.12 0.21 -0.19 -0.15 0.00 30/03/11 - 13/03/14 1078

Tumbarumba 0.58 0.61 0.65 0.30 0.49 0.56 0.53 0.55 0.51 0.39 0.17 0.24 0.42 0.16 0.53 0.49 0.25 0.11 -0.21 0.39 0.10 03/04/11 - 22/12/15 1492

Weany 0.76 0.81 0.85 0.61 0.79 0.81 0.83 0.34 0.18 0.14 0.28 0.18 0.16 0.12 0.27 0.08 -0.07 0.24 -0.14 0.00 0.06 02/12/10 - 22/12/15 1846

Robson 0.83 0.79 0.73 0.49 0.72 0.74 0.76 0.23 0.28 0.26 0.17 0.28 0.30 0.13 0.13 0.18 -0.05 0.09 -0.26 0.23 0.03 28/10/10 - 22/12/15 1881

Daly 0.81 0.79 0.87 0.21 0.86 0.72 0.86 0.21 0.22 0.15 0.23 0.16 0.19 0.16 0.10 0.10 -0.00 0.08 -0.11 0.06 0.11 07/06/11 - 22/12/15 1637

Norwin 0.30 0.06 0.34 0.34 0.33 -0.02 0.44 0.33 0.27 0.33 0.17 0.28 0.41 0.20 0.26 -0.17 -0.26 0.06 -0.16 -0.37 -0.11 12/05/11 - 25/06/13 758

Hamilton 0.94 0.95 0.80 0.35 0.62 0.98 0.90 0.55 0.35 0.15 0.24 0.26 0.25 0.14 0.55 0.34 -0.06 0.15 -0.20 0.22 0.11 01/07/15 - 22/12/15 175

Tullochgorum 0.60 0.71 0.77 0.45 0.49 0.87 0.62 0.59 0.35 0.15 0.30 0.23 0.16 0.26 0.55 0.30 0.02 0.25 -0.16 0.10 0.21 15/12/10 - 22/12/15 1833

Mineral_Banks 0.73 0.72 0.73 0.19 0.47 0.85 0.55 0.45 0.36 0.21 0.24 0.34 0.24 0.18 0.42 0.33 0.01 0.16 -0.31 0.20 0.09 06/12/13 - 22/12/15 739

Gri�th 0.41 0.58 0.73 0.57 0.72 0.47 0.58 0.56 0.22 0.15 0.37 0.08 0.23 0.14 0.52 0.16 0.00 0.36 -0.05 0.10 0.10 01/10/11 - 09/05/13 541

Yanco_Cosmoz 0.35 0.68 0.70 0.35 0.69 0.57 0.72 0.51 0.19 0.13 0.33 0.08 0.14 0.20 0.46 0.15 0.00 0.31 -0.03 0.01 0.17 01/04/11 - 22/12/15 1726

Alice_Springs_Mulga 0.46 0.60 0.80 0.55 0.78 0.53 0.77 0.46 0.20 0.13 0.30 0.09 0.14 0.16 0.39 0.13 0.01 0.28 -0.05 0.04 0.11 03/09/10 - 01/08/14 1428

Arcturus 0.66 0.53 0.70 0.66 0.71 0.42 0.67 0.30 0.21 0.26 0.20 0.26 0.31 0.19 0.23 -0.06 -0.20 0.08 -0.20 -0.23 -0.07 01/01/11 - 01/01/14 1096

Calperum 0.22 0.57 0.78 0.54 0.62 0.56 0.57 0.29 0.13 0.12 0.29 0.14 0.12 0.19 0.23 0.07 -0.08 0.27 -0.10 0.01 0.12 01/08/10 - 21/10/15 1907

Cape_tribulation 0.80 0.76 0.86 0.51 0.79 0.66 0.61 0.29 0.38 0.22 0.24 0.29 0.45 0.22 0.24 0.34 0.09 0.09 -0.24 0.40 0.02 01/01/10 - 03/09/15 2071

Cow_Bay -0.16 0.15 0.23 0.30 0.22 0.18 0.07 0.36 0.39 0.48 0.27 0.49 0.48 0.38 0.00 -0.28 -0.39 -0.11 -0.42 -0.38 -0.25 01/01/09 - 12/05/15 2322

Cumberland_Plain 0.13 0.35 0.59 0.45 0.60 0.24 0.40 0.43 0.23 0.18 0.37 0.18 0.22 0.25 0.30 0.07 -0.01 0.31 0.02 -0.04 0.15 19/10/12 - 31/10/15 1108

Howard_Springs 0.87 0.83 0.87 0.06 0.84 0.74 0.47 0.19 0.25 0.20 0.23 0.23 0.25 0.28 0.02 0.11 -0.04 0.05 -0.20 0.08 0.16 01/01/01 - 03/09/15 5356

Riggs_Creek 0.60 0.75 0.69 0.30 0.53 0.74 0.74 0.49 0.26 0.21 0.29 0.28 0.19 0.17 0.43 0.19 -0.10 0.16 -0.19 -0.07 0.01 18/12/10 - 06/07/15 1661

Samford 0.61 0.56 0.38 0.32 0.28 0.53 0.36 0.22 0.29 0.46 0.25 0.55 0.28 0.28 -0.01 -0.15 -0.35 -0.12 -0.51 -0.12 -0.18 01/01/10 - 22/12/15 2181

Sturt_Plains 0.87 0.90 0.73 0.49 0.75 0.79 0.77 0.15 0.17 0.28 0.27 0.34 0.23 0.21 0.01 -0.11 -0.19 0.06 -0.26 -0.14 -0.10 01/01/08 - 01/01/15 2556

Ti_Tree_East 0.51 0.64 0.80 0.47 0.74 0.59 0.76 0.21 0.12 0.13 0.23 0.16 0.14 0.11 0.09 -0.01 -0.09 0.18 -0.12 -0.07 -0.03 01/01/13 - 01/08/14 578

Wallaby_Creek 0.76 0.78 0.70 0.17 0.41 0.76 0.66 0.39 0.34 0.24 0.26 0.44 0.30 0.24 0.35 0.30 0.02 0.05 -0.38 0.25 -0.14 01/01/09 - 01/01/14 1826

Warra 0.52 0.62 0.44 0.05 0.33 0.91 0.38 0.64 0.57 0.35 0.38 0.22 0.38 0.29 0.62 0.55 0.23 0.31 -0.12 0.38 0.23 05/03/13 - 17/02/15 715

Whroo 0.53 0.66 0.77 0.44 0.61 0.73 0.62 0.58 0.32 0.14 0.37 0.11 0.28 0.22 0.53 0.27 0.06 0.35 -0.02 0.21 0.18 01/01/12 - 03/09/15 1341

Wombat_State_Forest 0.78 0.91 0.75 0.16 0.43 0.88 0.69 0.38 0.26 0.23 0.26 0.47 0.23 0.25 0.35 0.24 -0.07 -0.01 -0.42 0.20 -0.17 01/01/10 - 01/01/13 1096
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Results

4.3.2 Comparison at Various Layer Depths
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Figure 4.3: Box plots of correlation coe�cients between daily SPI API, MSDI as well as KBDI with in situ
soil moisture data at various measurement depths from OzNet sites between 2000 and 2015.

As discussed in the previous section and in Chapter 2, each index represents soil mois-
ture at di�erent soil layer depths. In order to compare the strength of the relationship
between these indices and in situ soil moisture, correlation coe�cients were compared
at four depths, 0-7 cm, 0-30 cm, 0-60 cm and 0-90 cm. These depths were chosen as they
are common for all OzNet sites, with other networks having either various measurement
depths or just the surface soil moisture available. These depths represent the weighted
averages from the corresponding sum of individual soil layers. Figure 4.3 presents box
plots of daily correlation coe�cients between the in situ soil moisture and each prod-
uct separated by soil layer and the product itself. As previously stated, API and MSDI
have the largest values on average for all sites at the surface layer as does ss, with SPI
performing particularly weakly. Most strikingly, each of API, SPI, and s0 have a large
decrease in correlation coe�cients with deeper soil layers. Conversely, values for KBDI,
MSDI, and ss show a marginal increase for larger depths, in particular, KBDI which ap-
pears much better suited at 0-90 cm. This is largely due to the calculation of each index.
API and SPI are purely precipitation based whereas KBDI and MSDI represent evapo-
transpiration within their water balance models allowing for a better representation of
soil moisture beyond the surface layer. For each index, as the layer depth increases the
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variance in the values between sites increases substantially. A possible reason for this is
the di�erence in the in�ltration rate between soil layers (horizons) at the various sites. It
would be expected that for each index, correlation coe�cients decrease with increasing
soil depth due to the fact that they are calculated based on precipitation data or models
which generally only consider the surface layer, however, this would not account for the
di�erence seen.

4.3.3 Gridded Comparison of AWAP Derived Indices versus ESA
CCI Soil Moisture

To further compare each moisture index, the indices were computed for Australia at a
resolution of 5 km between 1979-2015 using AWAP precipitation, temperature, and other
variables. In order to compare against an independent reference soil moisture, the ESA
CCI combined remotely sensed soil moisture product was used. As this product is avail-
able at a resolution of 25 km between 1979-2015, the AWAP derived moisture indices
were up-scaled to match this resolution and are used for the remainder of this section.

Prior to comparing the Pearson correlation coe�cients between indices, Hovmöller di-
agrams were produced. These visually present the one-dimensional spatial variation
in soil moisture over a given period of time. This can be computed over either latitudes
(Refer to appendix; Figure B.1) or longitudes (Figure 4.4), providing detail in each coordi-
nate plane. For ease of comparison, the standard deviation from the mean soil moisture
was produced for each index with negative values represent dry anomalies and con-
versely, positive values, wet anomalies. Anomalies were calculated for the entire time
series, but for graphical purposes, the period 2010-2015 was used as it spans the most
current known wet and dry periods. Inter-seasonal periods of wet and dry conditions are
re�ected in Figures 4.4 & B.1. Both �gures indicate the typical seasonal variability be-
tween 2012-2015 with a distinct wetter period in the two years prior. This is particularly
noticeable with KBDI which appears to have less temporal variation than each other
index as well as the ESA CCI soil moisture product. SPI and API appear to best re�ect
anomalies seen in ESA CCI soil moisture over both latitudes and longitudes, however,
API shows more extreme wet anomalies in higher latitudes and across longitudes. Like-
wise, AWAP derived soil moisture appears to have more extreme wet and dry anomalies
compared to the ESA CCI soil moisture.
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Figure 4.4: Time-longitude Hovmöller diagrams of anomalous monthly soil moisture (compared to the
1979-2015 climatological mean) for each moisture index averaged between 112◦E and 156.25◦E longi-
tudes during the 2010-2015 period.

These results are re�ected in Figure 4.5, which displays the correlation coe�cients of
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the normalised soil moisture, the normalised anomalous soil moisture, the RMSE, and
the bias for each index compared to the ESA CCI soil moisture product. Again, KBDI
appears to have vastly di�erent values over central Australia, with coe�cients typically
between 0.2 and 0.5. Also, the RMSE and bias are the largest of all the indices in these
regions due to the lack of precipitation. To maintain consistency, any regions with a
mean annual precipitation of less than 1 mm have been masked out. It appears that cor-
relation coe�cients around the masked regions are heavily in�uenced by the reduced
density of observational data and precipitation data was interpolated near the edges.
Similarly, the Nullarbor plains typically have very little precipitation and consequently,
correlation coe�cients are lower on average than other regions of Australia as well as
larger RMSE and biases in this region. Regions such as the tropical north and alpine
south-east Australia, that have a far greater variability in maximum and minimum pre-
cipitation, however, they show the largest correlation coe�cients and lowest RMSE and
biases. This is to be expected, as there are a larger number of “dry-down” periods, where
the dynamical range and behaviour can be better represented by products. Due to this,
there is a higher correlation among these regions. These “dry-down” periods are repre-
sented in the patterns seen in the Hovmöller diagrams for each index.

Average correlation coe�cients, the number of observations and the adjusted alpha sig-
ni�cance level are inset to each plot of Figure 4.5. Correlation coe�cients on average are
between 0.483 and 0.611 for daily normalised data and considerably lower, ranging be-
tween 0.325 and 0.592 for anomalies. Similarly as with Section 4.3.1, API has the largest
correlations along with MSDI. Surprisingly, AWAP derived soil moisture has very high
values for both normalised daily and for anomalies. This is due to the relatively low
RMSE and biases compared to the other products, and maybe a result of corrections to
the hydrological model used for its computation in low-precipitation regions.

These results are similarly re�ected for monthly data as shown in Figure 4.6. As in Sec-
tion 4.3.1, monthly correlation coe�cients are consistently higher on average than daily
values, which, as suggested, is a result of a “smoothing” of the daily variation in soil
moisture. Correlation coe�cients are between 0.659 and 0.739 for normalised monthly
data and between 0.455 and 0.648 for monthly anomalies. Monthly API and AWAP soil
moisture perform are consistent with values seen for daily data, however, MSDI and
KBDI show clear improvements in the overall correlation coe�cients, particularly for
KBDI, which performed the worst over the daily domain. The spatial variation is rela-
tively consistent between daily and monthly values with the weakest correlations again,
in central Australia.
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Figure 4.5: Correlation, anomaly correlation, bias and RMSE of daily soil moisture for each index com-
pared to ESA CCI soil moisture. Data are standardised and values are calculated for the period, 1979-2015.
Stippling is indicated for signi�cant correlation coe�cients using the False Discovery Rate transformation
(level is denoted as ρFDR). Also shown are the mean correlation coe�cients across Australia using the
Fisher-Z transformation (rz′ ) and the number of observations (nObs) used for calculations.
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Figure 4.6: Correlation, anomaly correlation, bias and RMSE of monthly soil moisture for each index com-
pared to ESA CCI soil moisture. Data are standardised and values are calculated for the period, 1979-2015.
Stippling is indicated for signi�cant correlation coe�cients using the False Discovery Rate transformation
(level is denoted as ρFDR). Also shown are the mean correlation coe�cients across Australia using the
Fisher-Z transformation (rz′ ) and the number of observations (nObs) used for calculations.
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4.3.4 Gridded Comparison of Correlation Coe�cients and Soil Prop-
erties

As suggested in Section 4.3.2, the in�uence that various soil properties and climate
regimes have on the relationship between soil moisture and precipitation-driven mois-
ture indices is investigated here. As done previously, the dominant soil type was ex-
tracted from the ASRIS product and rescaled to 25 km resolution to match the ESA CCI
soil moisture product. The gridded data allows for the comparison of the full gamut of
soil types (12) rather than the three types that were previously used, now ranging from
sands and silts to loams and clays. Also as before, the Köppen-Geiger climate regions
are de�ned using the �ve dominant regimes: savanna, tropical, arid, semi-arid and tem-
perate. Finally, porosity, vegetation optical depth, and topographic complexity are also
compared. Each of these variables are included in the ESA CCI product and are used to
interpret spatial di�erences in the soil moisture therein. The porosity is a measure of the
space between the soil material as a fraction of the total volume, given as a percentage;
the vegetation optical depth (VOD) is proportional to the vegetation water content of
the above-ground biomass and is generally used as a proxy for biomass content given as
a fraction between 0-1; lastly the topographic complexity is de�ned as the normalised
standard deviation of elevation within a grid cell.

Figure 4.7 presents bivariate choropleth maps with the correlation coe�cient between
ESA CCI soil moisture and moisture indices on the y-axis and the VOD, topographic
complexity, climate regimes, and soil properties on the x-axis. Each set of maps has in-
dependent legends with colours chosen to best re�ect the spatial variation seen, with the
exception of the Köoppen-Geiger climate comparison which uses the previously de�ned
colours set for each regime. From the soil types, it is clear that the dominant soil types
throughout Australia are sands and loamy soils with only small regions in north-western
Queensland and south-east Australia with a higher clay content. For each soil type, as
the correlation approaches a minimum, the colour fades to white. As previously, we see
that the lowest correlations are in the central Australia region and portions of South
Australia and far Western Australia. These regions generally have sandy or silty soils
which are very coarse, but, this is not necessarily the case throughout Australia. The
Margaret River region of south-west Western Australia generally has silty/sandy soils
as does tropical Northern Australia and correlation coe�cients are much higher in these
regions, meaning that in these regions correlation coe�cients are in�uenced by other
mechanisms, such as the dynamical range of precipitation as discussed previously.
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Figure 4.7: Bivariate choropleth maps of correlation coe�cients between each indices (rows) and ESA CCI
derived soil moisture plotted against; soil types (�rst column), soil porosity (second column), topographic
complexity (third column), vegetation optical depth (fourth column), and Köppen-Geiger climate regimes
(�fth column).

These results are similar to what is seen with the porosity which is directly related to soil
type. Porosity is inversely proportional to grain size with sands representing soils with
typically low porosity (Certini, 2005). Again, the least porous soil and lowest correla-
tion coe�cients are seen in central Australia, conversely, the most porous soil is located
in north-eastern Australia. KBDI appears to be particularly in�uenced by porosity and
has the largest extent of low correlations compared to the other indices, in contrast,
MSDI performs best in regions that generally have low porosity. The most noticeable
di�erence between index correlations and the porosity is in western Queensland, where
there are predominately more porous clay soils seeing a large variation in the correla-
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tion coe�cients between indices. Large areas with predominately clay soils typically
have a high correlation for AWAP s0, MSDI, and SPI, whereas, API and in particular
KBDI tend to have low correlations in these regions. For all soil types and porosities, it
appears that the greatest contrast in correlation coe�cients occur with porous clay soils.

Topographic complexity, as well as, VOD has also been compared for Australia with
the most noticeable di�erences across moisture indices occurring in the south-east and
south-west of Australia. In the south-west of Australia, correlation coe�cients for AWAP
s0 appear to be far lower in regions with low topographic complexity and a low VOD.
Likewise, in south-east alpine Australia where the topographic complexity is low and
the VOD is high, correlation coe�cients are typically higher. However, this distinctly
di�ers on the eastward edge of the alpine region running along the coast of south-east
Australia. This essentially due to the ESA CCI product performing poorly in the east
of the Great Dividing Range where surface conditions (i.e. mountains, forests) hinder
microwave sensors in these regions because of the topographic roughness and the high
vegetation cover

Essentially, the ESA CCI SM product is not doing well east of the Great Dividing Range,
because of the surface conditions (mountains, forests) - microwave sensors simply do
not perform well in those regions because of the topographic roughness and the vegeta-
tion cover. I.e. the topographic complexity is far higher, coupled with a large VOD and
hence correlation coe�cients in this region are relatively low in comparison to other
regions. These observations are most noticeable for KBDI which appears to have a large
di�erence in the sensitivity to these variations compared to the ESA CCI product and
with the other indices, as does MSDI albeit to a lesser extent.

Finally, correlation coe�cients were compared for each of the Köppen-Geiger climate
regions. For each moisture index, the savannas appear to have the most consistent cor-
relation coe�cients, as does the semi-arid region. In both regimes, there are few sub-
regions to exhibit low correlations. In contrast, the temperate and arid regions appear to
show the largest variation in observed values, particularly in the aforementioned regions
of coastal south-east Australia and central Australia. These results are summarised in
Figure 4.8, in which the Fisher-Z transformation was used to produce averages per cli-
mate region for daily and monthly data. Again, in both daily and monthly data that the
savanna regions has the largest correlation coe�cients with the exception of AWAP s0
with values generally between 0.7 and 0.8. The Arid region typically performs the worst
over each temporal domain, particularly for KBDI, in which values are approximately
a third of the savanna regime. The least variation between regimes occurs for API and
AWAP s0, particularly in the daily domain.
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Figure 4.8: Averaged correlation coe�cients of daily and monthly moisture Indices versus ESA CCI soil
moisture at each major Köppen-Geiger regime. Averaged correlation coe�cients are calculated using the
Fisher-Z transformation (rz′ ).

4.4 Discussion

The primary focus of this chapter was to compare commonly used moisture indices
against in situ and a remotely sensed reference soil moisture in relation to di�erences
in soil, vegetation and climate characteristics across Australia. Whilst this study shares
similarities with previous studies such as Su et al. (2013), Holgate et al. (2016), and Ku-
mar et al. (2017), this study vastly expands on this work, providing a larger number of in
situ sites from various networks at several soil depths, gridded comparisons as well as
comparing these results to spatially variable characteristics such as VOD, topographic
complexity, porosity, soil type, and Köppen-Geiger climate regimes.

More so, a general caveat when comparing satellite observations and in situ measure-
ments is the spatial representativeness and temporal stability of in situ measurements
used as validation for satellite products (Brocca et al., 2009). That is, the longer the tem-
poral period used and the number of measurements used to represent a moisture at any
given location the more accurate the validation of products (Brocca et al., 2009). There-
fore, this chapter analyses the di�erence between moisture indices and a reference soil
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moisture over a longer time-range than the aforementioned studies, as well as, further
extending this analysis temporally by comparing the indices to a remotely sensed refer-
ence soil moisture (which has a longer temporal record than in situ observations).

The ESA CCI product, used here, has been thoroughly evaluated against ground based-
observations globally (Dorigo et al., 2015). Dorigo et al. (2015) found that correlation
coe�cients between the product and in situ measurements were 0.46 for the absolute
values and 0.36 for the soil moisture anomalies, with biases on average around 0.04 and
0.05 m3m−3, respectively. The results presented in this chapter are in agreement with
this work, across similar sites, but an increase in quality is shown at all sites with our re-
sults indicating that correlation coe�cients are on average between 0.6 and 0.75. Whilst
the ESA CCI product does not have a perfect agreement with in situ measurements of
soil moisture and varies spatially, this data set has been used for comparison of gridded
data due to its common use in regional and global studies and to determine the compar-
ative spatial strengths of API, MSDI, KBDI, SPI and AWAP s0 across Australia.

The results presented in this chapter compare well with the previously mentioned stud-
ies, in particular, that of Holgate et al. (2016) which compared 11 various soil moisture
products including MSDI, KBDI and API at 7 OzFlux, 2 OzNet and 4 CosmOz sites. (Hol-
gate et al., 2016) found that for the 2001-2014 period, API performed consistently bet-
ter (0.63-84) across all Australian sites although the highest correlations occurred for
MSDI (0.44-0.87) with KBDI performing poorly at some sites (0.25-0.86), namely at the
Yanco CosmOz site. This is similar to the results of the present study where API tends
to have the highest degree of association with daily soil moisture across sites on av-
erage (0.72) with correlation coe�cients between 0.23-0.89 compared to MSDI between
0.15-0.95 (0.69; average), KBDI between -0.16-0.97 (0.59; average), SPI between -0.66-0.66
(0.41; average) and between 0.22-0.88 AWAP s0 (0.60; average). Similarly, the CosmOz
Yanco site showed correlations as low as 0.35, but, the Cow Bay and Norwin sites were
clearly the worst performing, recording negative correlations and almost no association.
The Norwin site has a limited period of data of just over two years and the Cow Bay site
a rainforest site, is situated in the tropical climate with an extremely large variation in
daily precipitation, which may account for the poor performances at these sites.

Similarly, Kumar et al. (2017) compared KBDI, MSDI, and API at 38 OzNet sites and at
nine CosmOz sites. KBDI (0.40-0.74) and MSDI (0.42-0.76) outperformed API (0.43-0.67)
across all sites in this study. As vegetation plays an important role in the control of
�re activity (Forkel et al., 2017) due to the relationship between biomass production and
root zone soil moisture (Werf et al., 2006). The representation of soil moisture at various
depths and its subsequent relationship on the sensible heat �ux at the surface (as investi-
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gated in the following chapter) is particularly important. This chapter assessed the rela-
tionship between various soil moisture products at various soil depths. API had largely
contrasting correlations between depths with coe�cients as low as 0.43-0.58 compared
to MSDI and KBDI which only slightly di�ered between layers. The results presented in
here in this chapter are in agreement with Kumar et al. (2017) where API correlations
continuously decreased through each of the four layers with averages of 0.77, 0.74, 0.48
and 0.30 for the 0-7 cm, 0-30cm, 30-60 cm and 60-90 cm layers, respectively. This com-
pares with MSDI and KBDI which only slightly di�er through each layer, indicating that
they represent soil moisture at deeper layers. This is to be expected as the MSDI and
KBDI models include an in�ltration component within their formulation. Conversely,
API and SPI and are precipitation-based models which generally only consider the sur-
face soil layer. In the case of AWAP s0, this is a more complex hydrological model, and
as expected there was a stark contrast in the relationship at various soil depths depend-
ing which of the two products were used. The surface soil moisture product generally
was outperformed at each of the layers compared to the shallow layer product, most
particularly at 0-30 cm, 0-60 cm and 0-100 cm. It was also found that correlations vary
considerably depending on both the depth and the soil type at in situ sites. For instance,
API performed better at deeper layers in sandy soils with a higher �ltration. Conversely,
the advantage of both KBDI and MSDI is lessened in clay soils which typically hold a
larger content of water and lower �ltration properties. This is most noticeable with
KBDI, and particularly so when comparing clay soils with high porosities in Figure 4.7.
Here we can see that AWAP s0, API, and SPI have larger correlations in these regions
compared to both KBDI and MSDI.

In addition, KBDI shows a large wet bias across all sites for both monthly and daily data
as well as for gridded data. As mentioned by Kumar et al. (2017), it is well established that
KBDI indicates signi�cantly wetter conditions than MSDI (Finkele et al., 2006). With our
results, this is particularly the case in comparison to API, SPI, and AWAP s0. This di�er-
ence is partly due to the drying component of the KBDI model. KBDI is computed using
ET which is driven by the vegetation cover and in turn, is a function of the mean annual
precipitation (Holgate et al., 2016). This is in agreement with observed di�erences in cor-
relation coe�cients between the climate regimes. I.e. the largest di�erence between cor-
relation coe�cients of KBDI occurs between the savanna and the arid regimes. KBDI and
to a lesser degree MSDI perform exceptionally strongly in the savanna regime with the
highest average (gridded data) correlations of in excess of 0.8 seen. Similarly, (Holgate et
al., 2016) also found that for KBDI and MSDI the highest correlation coe�cients occurred
in grassland (savanna) regimes. However, KBDI displayed the greatest variability in this
regime. (Holgate et al., 2016) also found that MSDI showed a much lower variation in
the correlation between sites compared to KBDI; this is also the case for the results in
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this study which found on average across all grid boxes within each climate regime that
there is a far smaller variation in observed values. Again this is due to the di�erence in
the models drying component. Where KBDI’s in�ltration is statically set at 5 mm regard-
less of vegetation cover, MSDI assigns vegetation via seven classes, each with a separate
interception, canopy storage and wet evaporation rates (Finkele et al., 2006). Therefore,
any variations in the correlations seen spatially and across climate regimes are also a
result of other mechanisms. Similar to MSDI, AWAP-derived soil moisture uses a wa-
ter balance model which dynamically considers the transpiration, evapo[transpi]ration,
runo�, drainage, and precipitation. Likewise, for the savanna regime, it outperforms API
and SPI and again has a far smaller variability between regimes than KBDI. Across the
Australian in situ sites, AWAP s0 performs strongly only being outperformed by API and
MSDI.

Finally, di�erences in the topographic complexity and the VOD have been shown to
greatly a�ect the observed spatial variation in the correlation coe�cients. VOD has been
shown to be an e�ective proxy for estimating biomass (Tian et al., 2016) and it has been
found that there are low similarities between soil moisture products in regions with both
dense vegetation as well as in topographically complex terrain (Nicolai-Shaw et al., 2015).
This was also suggested by Rebel et al. (2012) who suggested that accurate soil moisture
estimates are limited to regions with low-to-moderate VOD (< 0.6). The results indicate
that the low correlations seen for each index in coastal south-east Australia are due to a
high topographic complexity and high relative VOD despite highly porous sandy-loam
soils dominating.
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Discussion - CHAPTER SUMMARY

Chapter Summary

This chapter evaluates the relationship between soil moisture indices/models and in situ
soil moisture at both daily and at a monthly scale. It was found that API and MSDI
show the largest correlation to in situ surface soil moisture (normalised and normalised
anomaly) with the highest correlations observed in the OzNet network. Both KBDI and
14-day SPI observe a large wet bias across all sites and AWAP surface soil moisture show-
ing a large dry bias compared to in situ sites. However, these results are not re�ected
in deeper soil moisture layers with KBDI and MSDI best representing soil moisture at
30, 60 and 90 cm compared to API, SPI, and AWAP s0. Average correlation coe�cients
between in situ sites and both KBDI and MSDI are generally consistent with varying
depths indicating that these might be better suited for root zone studies. These results
are consistent with the comparison of gridded products. Again, both API and MSDI out-
perform the other indices and models, but, spatial variations appears to be largely due to
the soil and climate characteristics. From this chapter, further comparisons of the e�ect
of these moisture indices have on both temperature and �re metrics can be interpreted
in the context of the spatial variability of their relationship to soil moisture.
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CHAPTER5
Variability of Soil Moisture Proxies and

Hot Days

Sections of this chapter have been published as: Holmes, A., C. Rüdiger, B. Mueller, M.
Hirschi, and N. Tapper (2017). "Variability of soil moisture proxies and hot days across
the climate regimes of Australia.” Geophysical Research Letters 44 (14): 7265-7275.

Overview The large-scale weather dynamics of heat waves are well documented.
However, studies have only recently indicated a link between soil moisture de�cits and
hot extremes, focusing on the strength of coupling between the two. This chapter contin-
ues on from the investigation of various soil moisture indices in Australia in the previous
chapter. Here, the e�ect of observed soil moisture de�cits on temperature extremes is
investigated. In particular, this chapter investigates the relationship between hot-days
(Tx90) and the various soil moisture products (i.e. the Standardized Precipitation In-
dex, Antecedent Precipitation Index, Mount’s Soil Dryness Index, and the Keetch-Byram
Drought Index) previously introduced and the variation of this relationship’s strength
changes for the di�erent climate regimes within Australia. It is shown that a strong
negative-correlation between Tx90 and each moisture index exists, particularly for the
tropical savanna and temperate regimes. However, the magnitude of the increase in Tx90
with decreasing moisture is strongest in semi-arid and arid regions of the country. In ad-
dition, it was found that the magnitude of the correlation coe�cient between Tx90 and
moisture is highly a�ected by the strength of La Niña’s impact on precipitation. Link-
ing the e�ects of soil moisture on precursory �re weather conditions, such as extreme
temperatures, an improved understanding of how soil moisture indirectly in�uences �re
risk is achieved.
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Identi�cation of the Transitional Zone and Energy Partitioning

5.1 Identi�cation of the Transitional Zone and En-
ergy Partitioning

5.1.1 Introduction

Drought and heat wave events are regular occurrences on a large scale in semi-arid
regions of the world, such as Australia, and are predicted to further increase in their fre-
quency and severity (Cowan et al., 2014). Much of Australia has been heavily a�ected by
drought conditions in recent years and as such, a large stress has been placed on the allo-
cation of water resources. Understanding the changes in the hydrological conditions and
water balance in a region is essential for understanding the distribution of droughts and
any ensuing forcing of extreme temperatures. Without such an understanding, potential
mitigation through accurate forecasting of these extreme events cannot be reasonably
achieved.

As mentioned in Chapter 2, the soil moisture of a region determines the partitioning
between sensible and latent heating. Sensible heat dominating latent heat will cause a
localised temperature change as a result of the direct heating at the surface. However,
latent heat dominating sensible heat will result in a larger amount of evapotranspiration
and a decrease in surface temperature (Seneviratne et al., 2010). Evapotranspiration in
a region can be either moisture or radiation limited. In the case of moisture limitation,
the lack of available water prevents evapotranspiration. Conversely, radiation limitation
occurs where moisture is abundantly available while the amount of evapotranspiration
(ET) is dependent on incoming radiation Teuling et al. (2006). When soil moisture is
below the wilting point (θWILT ) then evapotranspiration will be at a minimum (direct
relationship between temperature and radiation resulting in only sensible heating) and
likewise if the surface is saturated (θCRIT ) then evapotranspiration will be at a maximum
(latent heating is at a maximum) and only dependent on available energy. However, a re-
gion that is normally soil moisture limited between the wilting point and critical level is
known as the transitional zone (Seneviratne et al., 2010). Transitional zones lie between
wet and dry climates or semi-arid regions such as large parts of Australia. Hirschi et al.
(2010) indicate that for soil moisture to a�ect the surface energy balance, a region needs
to be in the transitional zone.

Typically, changes in climate regimes, which depict di�erences in the energy partition-
ing, precipitation, and evapotranspiration are assessed using the P - E metric (e.g. Dai,
2013; Liu et al., 2013). This can be seen primarily using the Köppen-Geiger climate clas-
si�cation scheme. As mentioned in Chapter 3.3.3, this divides climate regimes into �ve
main categories: arid, semi-arid, temperate, savanna or dry tropics, and wet tropics, with
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further sub-categories describing the variation of the climate therein, using thresholds
of the mean monthly precipitation, temperature, and evapotranspiration (Kottek et al.,
2006; Peel et al., 2007). By de�nition, arid climate regimes have a monthly precipitation
less than half of the potential evapotranspiration, semi-arid regions have a monthly pre-
cipitation between 50% and 100% of their potential evapotranspiration, and temperate
regimes a monthly precipitation in excess of 100% of the potential evapotranspiration.
Mathematically speaking, P − E > 0 implies a ‘wet [climate] regime’ and P − E < 0

a ‘dry [climate] regime’. However, because of this, the climate regime paradigm as de-
�ned by Köppen (1884), Kottek et al. (2006), and Peel et al. (2007), may not be su�ciently
accurate for comparisons of land-climate interactions between regions which are other-
wise categorised as similar climate regimes. In the case of the in�uence of soil moisture
on hot extremes through changes in the energy balance in the transitional zone, it is
not su�cient to simply conclude that this relationship will hold true in all semi-arid re-
gions because these are typically de�ned as within the transitional zone. Due to this,
prior to investigating the variation of soil moisture within Australia or its relationship
to Tx90, it is essential to investigate the spatial variation of the energy partitioning and
consequently the position of the transitional zones in Australia.

5.1.2 Data and Methodology

Changes in hydroclimatological conditions and the transitional zone are examined using
yearly averages of precipitation, evapotranspiration and net radiation (Rn) estimates for
each climate regime as well as spatially across Australia. Furthermore, as discussed in
Chapter 2, Budyko (1974) proposed an empirical relationship between the actual evapo-
transpiration ratio (ET

P
) and the dryness index, determined by the potential evapotran-

spiration ratio (Rn
P

), as de�ned by Eq. 5.1 (where φ is the dryness index).

Depending on the limiting regime of this relationship a positive feedback to temperature
is expected to be seen. Using the Budyko framework (Budyko, 1974) this relationship
can be investigated to determine if the region is limited by moisture or radiation, by
plotting values of actual evapotranspiration (ET

P
) and potential evapotranspiration (Rn

P
)

against each. The Budyko curve as provided by Eq. 5.1 is an estimate of the relationship
between the amount of moisture versus the amount of radiation based on the average of
world basins and does not account for the di�erences in soil moisture storage for various
basins. Pike (1964) and Choudhury (1999) proposed variations of Eq. 5.1, accounting
for di�erent soil moisture storages using a shape parameter (υ, where the magnitude
describes the amount of soil moisture storage). This relationship is given by Eq. 5.2.
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f(φ) = φ[1− exp(−φ)].tanh(
1

φ
)

1
2

(5.1)

f(φ) = (1 + φ−υ)
−1
υ (5.2)

5.1.3 Results

Fitted Turc-Pike curves provide an easy method for the comparison against the Budyko
curve (ideal watershed) and for identifying how the climate characteristics di�er for par-
ticular watersheds from their generic regime classi�cation. This was produced for each
Köppen climate regime with each data point representing the ratio between the dryness
and the evaporative index for each year between 1950 and 2015 (Figure 5.1). As men-
tioned the transitional zone occurs between the �eld capacity (PET/P < 1) and the
wilting point (PET/P > 3, depending on vegetation and root zone (Seneviratne et al.,
2010; Rouholahnejad et al., 2016). Typically, the semi-arid region is described as being
within the transitional zone (Seneviratne et al., 2010), however, in 34 out of 46 years, the
semi-arid region has a dryness index exceeding 3 and is thus moisture limited.

Figure 5.1: Budyko scatter plot of evaporation index versus the dryness index for each Köppen-Geiger
region based on yearly averages between 1950 and 2015.

As expected, all and roughly half the years for the arid and tropical regimes, respectively,
fall outside the transitional zone. Both the temperate and savanna regimes have values
that largely fall within the transitional zone. This is re�ected in the �tted Turk-Pike
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curves where these regimes have parameters closest to that of the ideal Budyko curve
(Figure 5.1).

Figure 5.2: Climate drivers using yearly averages between 1950 and 2015 at 5km resolution. (Top) Bivari-
ate map of evapotranspiration drivers, i.e. correlation coe�cients between evapotranspiration, incoming
solar radiation and precipitation indicating the distribution of moisture and radiation limited regions.
(Bottom) Distribution of arid (brown) and humid (blue) zones as well as the "transitional’ regime (grey).

These results are also outlined spatially when comparing the dryness and the evapora-
tive index across Australia (Figure 5.2;top). Similarly to Teuling et al. (2009), the correla-
tion coe�cients of yearly ET with shortwave solar radiation (Rn) and the precipitation
(P) for all of Australia are shown in Figure 5.2;top. Comparing these using a bivariate
choropleth legend, two distinct regions can be identi�ed: i) the moisture limited region
characterised by high correlation coe�cients (ρ) between P and ET but low correlation
between Rn and ET (red-coloured areas), and ii) the energy limited region which is char-
acterized by low correlation between P and ET and a high correlation between Rn and
ET (blue-coloured areas). Areas that are neither strongly moisture nor energy limited
are within the transitional zone (pale-coloured areas), this is in strong agreement with
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Figure 5.2, showing similar transitional zone patterns as outlined previously. From this,
we can see that there is no strong limiting regime in far northern savanna, the southwest
and coastal east and south-east of Australia. This is in strong agreement to the patterns
seen from the Köppen-Geiger classi�cations where parts of the semi-arid and savanna
regions are within the transitional zone. Conversely, alpine Australia and the majority
of inland Australia are radiation and moisture limited, respectively.

Finally, as from Figure 5.1, the di�erent aridity (dryness) index values are spatially pre-
sented for Australia in Figure 5.2;bottom. This separates the aridity (dryness) index into
the three zones; the humid (blue), arid (brown) and the transitional zones (gray). From
this, the transitional zone can be clearly spatially identi�ed and coincides with the re-
gions which are neither strongly moisture nor energy limited in Figure 5.2;top. Similarly
to Figure 5.2;top, alpine and inland Australia fall outside the transitional zone.

5.2 Soil Moisture and its Relationship to Tx90 (Hot-
Days)

5.2.1 Introduction

Following the investigation of the distribution of energy partitioning, the location of the
transitional zone and the link between soil moisture and temperature extremes are inves-
tigated here. As established in Chapter 2, de�cits in soil moisture have the largest e�ect
on temperature extremes through ampli�ed sensible heating in regions that are consid-
ered to be within the transitional zone (as these regions are most sensitive to changes in
soil moisture resulting in di�erences in evapotranspiration). Furthermore, heat waves
have been linked to several modes of climate variability, which in�uence large-scale
dynamics leading to changes in moisture availability (Cai et al., 2009). Modes of inter-
annual variability such as the El Nino- Southern Oscillation and the Indian Ocean Dipole
have been shown to largely a�ect the rainfall in Australia (Jones et al., 2000; Cai et al.,
2009; Williams et al., 2009). Such changes in rainfall can strongly in�uence soil moisture
availability and have been linked to extreme heat-wave conditions (Jones et al., 2000;
Cai et al., 2009; Perkins et al., 2015; Perkins-Kirkpatrick et al., 2016). Anomalies from the
mean conditions in the land surface, in particular in soil moisture, have been recently
studied with a focus on observational datasets in Europe (Hirschi et al., 2010) and glob-
ally (Mueller et al., 2012), and more recently in Australia (Herold et al., 2016).

The relationship between SPI and Tx90 has been previously investigated using obser-
vational data in Europe (Hirschi et al., 2010) and modelled data globally (Mueller et al.,
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2012). Herold et al. (2016) conducted a continental scale analysis of Australia using the
Standardized Precipitation Evaporative Index (SPEI) and found that during low soil mois-
ture conditions there is a reduced likelihood of low heat wave temperatures. However,
Herold et al. (2016) concluded that low soil moisture is necessary, but not a su�cient
requirement, for heatwave days. Likewise, Kala et al. (2015) investigated the e�ects of
soil moisture anomalies on the heat wave in the lead up to the “Black Saturday” �res in
February 2009. They found that drier soils led to a higher maximum temperature at a
lead-time of 5 days, whereas for longer time frames (10 and 15 days), a change in temper-
ature did not necessarily coincide with a change in soil moisture. This further signi�es
the importance of investigating the e�ect of soil moisture of the conditions leading to
forest �res and their intensity.

While these studies have investigated the magnitude and variability of this relationship
between heat waves and soil moisture at various temporal scales, a direct comparison
between a range of land surface moisture indices including soil moisture itself is yet to
be undertaken. Likewise, these studies did not investigate the spatial variability of this
relationship in context with di�erent climate regimes and moisture/radiation partition-
ing across Australia.

The aim of this section is to substantially build on previous studies by investigating
whether the relationship between soil moisture and Tx90 di�ers across the climate regimes
of Australia and how this changes using various moisture indices. Moreover, the context
of this relationship is examined and compared against the moisture/radiation partition-
ing across Australia, as explored previously in this chapter. Finally, this relationship is
investigated at a higher spatial resolution (5km) compared to previous lower-resolution
studies (50km) providing an insight into the local scale which has an impact on socio-
economic aspects of regions prone to an increasing number of Tx90 under future climate
change. This work will assist water management services to better allocate resources
through the identi�cation of regions where soil moisture can in�uence hot extremes.

5.2.2 Data and Methodology

The strength of the relationship between soil moisture indices and Tx90 is assessed using
the same methods and metrics as in Chapter 4.1. In particular, the Pearson correlation,
RMSE, and bias are all calculated in this section. As summer Tx90 are of particular in-
terest, the DJF or austral summer period is used for analysis. Any additional methods
are de�ned in the following subsections, below.
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Hot days (Tx90)

As mentioned, the relationship between soil moisture indices and hot extremes is inves-
tigated here. Hot extremes can be calculated using several methods, these range from
the number of consecutive days over a threshold temperature (Perkins et al., 2012) to
the exceedance of a certain percentage of the time series (Mueller et al., 2012). For the
purposes of this study, the number of Tx90 is de�ned as the number of days per month
exceeding the 90th percentile of the entire temperature time series. The percentile for
each day is calculated using a sliding 5-day window (± 2 days). This is calculated for
each day of the year providing 365 values. This method has been employed in similar
studies which also related Tx90 to preceding precipitation de�cits (Hirschi et al., 2010;
Mueller et al., 2012; Fischer et al., 2007).

Modes of Climate Variability - ENSO

The focus of this analysis is on establishing the relationship between soil moisture and
Tx90, but as heat waves have been linked to several modes of variability, namely the IOD,
SAM, and in particular, ENSO, the e�ect of ENSO on this relationship is also included.
Each of these in�uence the large-scale dynamical process leading to changes in moisture
availability (Cai et al., 2009). Typically, ENSO is commonly investigated in relation to
hot extremes as well as de�cits in moisture and precipitation (Potter et al., 2009; Cai
et al., 2011; Hallack-Alegria et al., 2012; Perkins et al., 2015; Yoon et al., 2015) and is
considered the dominant mode of climate variability in the Southern Hemisphere (Wang
et al., 2013), both directly, and due to its in�uence on SAM. Commonly, the intensity and
phase of ENSO are de�ned in terms of the Southern Oscillation Index (SOI). The Troup
SOI is used here to identify ENSO. This is de�ned as the di�erence in the Mean Sea Level
Pressure (MSLP) anomaly in the central equatorial Paci�c Ocean (between Darwin at
12.46◦S 130.85◦E, and Tahiti at 17.65◦S 149.43◦W ), and is calculated by Eq. 5.3.

SOI,= 10
[Pdiff − P̄diff ]

σ(Pdiff )

(5.3)

where, Pdiff is the di�erence between the MSLP of Tahiti and Darwin, P̄diff is the long-
term average of this di�erence, and σ(Pdiff ) is the long-term standard deviation with
values calculated monthly. Values above +7 and below -7 are considered strong ENSO
phases (La Niña and El Niño, respectively), while values between are considered neu-
tral. Strong positive values indicate El Niño events and are usually characterised by a
warming of the central and eastern tropical Paci�c Ocean and a decrease in Paci�c ‘trade
winds’. This weakening of the trade winds causes a reduction in winter and spring pre-
cipitation in eastern Australia (Cai et al., 2011). Strong negative values indicate La Niña
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events and are usually characterised by a warming of the western tropical Paci�c Ocean
and an increase in Paci�c trade winds. This enhancing of the trade winds causes an in-
crease in winter and spring precipitation in eastern Australia (Cai et al., 2011).

5.2.3 Results

Correlation between Moisture Indices and Tx90

The strength of the relationship between soil moisture and Tx90 has been investigated
by calculating the Pearson correlation coe�cient between each moisture index and Tx90.
Figure 5.3 presents correlation coe�cients spatially for Australia and the Köppen-Gieger
climate regions for DJF (for the periods 1971 to 2015 and 2000 to 2015). These two periods
are selected as they represent the whole time-series and the period of greatest warming
to current (including the ‘Millennial drought’). Average correlation coe�cients for all
months are summarised in Table 5.1.

Correlation coe�cients are generally negative and on average between −0.4to − 0.5

for each index (Table 5.1). The strongest negative correlation is found in the southeast
(semi-arid) and north (savanna) of Australia, with an inverse of this seen throughout
parts of tropical Queensland, the Northern Territory, and South Australia. During the
summer months (DJF; the monsoon season in the tropical North of Australia), any pe-
riods of signi�cantly drier conditions appear to have a strong in�uence on Tx90, as is
expected. There are considerably lower correlations around central Western Australia;
this is due to the region not being represented well by AWAP as there is near zero precip-
itation (areas with precipitation less than 1 mm over this period are masked) during the
time period, and also because of a high uncertainty in the accuracy of any precipitation
estimates, due to a lack of rain gauges. Correlation coe�cients are also generally very
low along the coasts south-western and southern Australia.

These spatial observations are re�ected in the averages seen in Table 5.1; the strongest
correlation coe�cients are seen in the semi-arid and savanna regimes. Regions that are
considered within the transitional zone as expected show large correlation coe�cients
on average with values ranging between -0.48 and -0.56. API, MSDI, and s0 typically
have the largest correlations in each climate regime and averaged across Australia.

92



Soil Moisture and its Relationship to Tx90 (Hot-Days)

Figure 5.3: (rows) Pearson correlation coe�cients between Tx90 and moisture indices for DJF months
between 1971 and 2015 (left) and between 2000 to 2015 (right). The colour bar is separated into Köppen-
Gieger climate regimes with each shading depicting a di�erent region. Also shown are the mean correla-
tion coe�cients climate region using the Fisher-z transformation (rz′ ).
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Table 5.1: Summary of Pearson correlation coe�cients between DJF Tx90 and SM indices for each climate
regime and for the transitional regime. This is given as a spatial average for the period 1971-2015 (top)
and 2000-2015 (bottom).

Arid Semi-Arid Temperate Tropical Savanna Transitional Average

19
71

-2
01

5

SPI -0.383 -0.414 -0.345 -0.423 -0.498 -0.417 -0.394
API -0.359 -0.419 -0.395 -0.398 -0.532 -0.458 -0.396

KBDI -0.406 -0.448 -0.429 -0.419 -0.489 -0.456 -0.426
MSDI -0.412 -0.439 -0.404 -0.375 -0.457 -0.427 -0.419

s0 -0.379 -0.428 -0.384 -0.378 -0.515 -0.448 -0.405

20
00

-2
01

5

SPI -0.445 -0.467 -0.354 -0.499 -0.529 -0.435 -0.443
API -0.406 -0.476 -0.417 -0.411 -0.603 -0.503 -0.444

KBDI -0.454 -0.485 -0.406 -0.445 -0.574 -0.480 -0.462
MSDI -0.471 -0.494 -0.390 -0.402 -0.534 -0.452 -0.467

s0 -0.420 -0.491 -0.414 -0.426 -0.585 -0.494 -0.454

Figure 5.4 shows scatter plots of each moisture index with Tx90, along with quantile
regression lines (0.1, 0.3, 0.5, 0.7, 0.9 in grey, mean and median regressions are denoted
by blue and red dotted lines, respectively as well as the 95% con�dence interval for the
mean, shaded in grey). Each point represents the spatial average of one month in the
period. Each moisture index is normalised between 0 and 1 for the purposes of compar-
ison. However, API and s0, tend to have very low moisture, with median values near to
zero. This is in contrast to SPI, KBDI, and MSDI which all have median values around
0.5. API appears to re�ect patterns seen in s0, both, with a logarithmic distribution of
increasing Tx90 with decreasing moisture. MSDI and KBDI appear to have a linear dis-
tribution over the domain. With each moisture index a distinct increase in Tx90 with
decreasing moisture. SPI has the greatest divergence in regression lines and also the
steepest gradient for each regression on average for all of Australia. Whilst SPI tends
to have lower correlation coe�cients than the other indices, this indicates that it tends
to have the strongest di�erence between the number of Tx90 and a change in moisture,
independent of climate regimes.

To investigate the di�erences in this relationship between the climate regimes, the slope
of the linear regression at various quantiles for each moisture indices (Figure 5.4) was
determined. The 95% con�dence intervals of the estimated slopes are also shown and
given as shading of the same colour as each climate regime. For each moisture index, we
can see that the arid and semi-arid regions have a much more pronounced increase in
the regression slope with increasing quantiles, signifying a much stronger relationship
between low soil moisture and Tx90 in these regions. This is particularly noticeable for
both API and s0 and to a lesser degree KBDI. When looking at values within the transi-
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tional zone we can see that it is very similar to a mixture of the temperate and semi-arid
regions.

Figure 5.4: (Left) Scatter plots of monthly DJF Tx90p versus SPI, API, MSDI and KBDI. Soil moisture
indices are normalised between 0 and 1. Also shown are linear regression lines for a selection of quantiles
(0.1, 0.3, 0.5, 0.7, 0.9 and the median). (Right) Quantile regression slopes of monthly DJF Tx90 and SPI, API,
MSDI and KBDI for each Köppen climate regime. The 95% con�dence intervals of the calculated slopes for
each climate regime are shaded . All data are spatially averaged for Australia and regions between 1971
and 2015.
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E�ect of ENSO on the SM-Tx90 relationship

Figure 5.5: (rows) Pearson correlation coe�cients between Tx90 and moisture indices for DJF months
between 1971 and 2015 for Australia. (column 1) Calculated over time-series. (column 2) La Niña months
with an SOI index greater than 7. (column 3) neutral months with an SOI index between -7 and 7. (col-
umn 4) El Ninõ months with an SOI index less than -7. Stippling is indicated for signi�cant correlation
coe�cients using the False Discovery Rate transformation (level is denoted as ρFDR). Also shown are
the mean correlation coe�cients across Australia using the Fisher-z transformation (rz′ ) and the number
of observations (nObs) used for calculations.

In order to show the di�erence in the SM-Tx90 relationship due to the e�ect of ENSO,
Figure 5.5 shows the spatially distributed Pearson correlation coe�cients between Tx90
and SM for all DJF months and further for DJF months with an SOI exceeding +7, less
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than -7 and from -7 and +7. Values above +7 and below -7 are considered strong ENSO
phases (La Niña and El Niño, respectively) while values between are considered neutral.
Stippling indicates regions which are statistically signi�cant at the 95% level (two-sided
t-test with the α level adjusted according to the FDR method).

Results show varying regions of mainly negative and some positive di�erences in the
correlation coe�cients for each La Niña, neutral and El Niño phases. El Niño and La
Niña events generally have a larger negative-correlation on average, indicating that re-
lationships between SM de�cits and Tx90 are generally stronger during these periods.
Typically, it is expected to �nd a larger amount of sensible heating and a stronger rela-
tionship in regions that have a lower than average winter and summer rainfall during El
Niño phases, such as northern Australia, south-eastern Australia, and central-western
Australia. However, correlation coe�cients during El Niño phases in these regions gen-
erally show little change as these are already usually the driest months. One exception
to this is in the tropical north, where DJF is the wet season. Therefore, intuitively, a
breakdown of the Tx90-SM relationship should be expected, however, stronger negative-
correlations are observed. This is due to the reduction in precipitation causing the region
to move into the transitional zone. Conversely, during La Niña phases the opposite e�ect
is observed, with much weaker correlation coe�cients and a positive change in correla-
tion coe�cients in the tropical north.

During La Niña events, strong positive correlation coe�cients are found across the
southern portion of Australia as well as arid regions of Western Australia (La Niña
events typically bring a larger number of precipitation events, particularly during win-
ter months which could contribute to higher than usual SM in DJF in these regions).
Arid regions are typically far too moisture limited and are not in the transitional regime,
hence, increases in moisture would not necessarily lead to a decrease in Tx90. On the
other hand, for temperate regions or regions within the transitional regime, a large in-
crease in moisture results in these regions being radiation limited and an increase in
Tx90 would not be attributed to changes in SM. The Nullarbor plain along the coast
of the Great Australian Blight, and regions of south-west Western Australia tends to
display large positive and negative changes during El Niño and La Niña phases, respec-
tively, however, those are not statistically signi�cant.

5.3 Discussion

The location in which changes in soil moisture largely a�ect the partitioning between
sensible and latent heat, described as the transitional zone, was compared spatially across
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Australia and for the �ve main Köppen-Gieger climate regimes therein. Seneviratne et
al. (2010) and Fischer et al. (2007) indicate that the transitional zone lies within semi-
arid regions within central and southern Europe, whereas Figure 5.1 indicates that for
Australia, the transitional zone is actually a combination of the savanna, semi-arid and
temperate Köppen-Gieger climate regimes. The generalisation of previous studies is
not applicable to Australia, as catchments are not only in magnitude larger than other
similar regions but also catchments in Australia often span several climate regimes. Be-
yond this, regions de�ned as semi-arid, through the Köppen-Gieger classi�cation are
dryer than other similarly de�ned regions, with evapotranspiration completely depen-
dent on the available precipitation. This means that large areas of semi-arid regions more
closely resemble arid conditions. Similarly, each Köppen-Gieger climate region tends to
be shifted towards drier conditions throughout Australia resulting in the di�erence in
the location of the transitional zone.

After establishing the position of the transitional zone, the degree of association between
Tx90 and SM was investigated using high-resolution observationally-based data across
Australia. Direct comparisons of various SM indices and the associated climate regimes
were investigated providing an insight into the water balance in Australia which is ex-
pected to be indicative of other semi-arid and arid regions of the world. A clear correla-
tion between the number of Tx90 and a decrease in SM during Austral summer months
(DJF) was found, comparable to other studies in south-eastern Europe (Hirschi et al.,
2010), Australia (Herold et al., 2016; Perkins et al., 2015), and globally (Mueller et al.,
2012). Whilst these studies have previously assessed the correlation of this relationship
and quantile regressions for a single SM index, this study analysed several additional
indices, as well as the AWAP s0 dataset.

SM itself has recently been investigated in relation to heat wave days for Australia
(Perkins, 2015; Perkins et al., 2015). However, this and the aforementioned studies have
not investigated this relationship in context with the various climate regimes within Aus-
tralia nor the partitioning of moisture and energy pertaining to the physical feedback
process itself. Due to the signi�cant range of climatological regimes across Australia and
the di�erences in the moisture and energy partitioning, the spatial variation in the ef-
fect of SM on Tx90 is expected to di�er vastly. Recent studies (Gibson et al., 2017a) have
investigated this spatial inhomogeneity in relation to how global climate models simu-
late heatwaves. Gibson et al. (2017a) suggests that the physical origins for the observed
di�erences could be due to land-atmosphere coupling and/or atmospheric circulation; to
name a few possibilities. This study presents an analysis in terms of the physical drivers
of the spatial variation seen in both Tx90 and SM indices in Australia, which may help
inform other model evaluation studies.
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The negative-correlation between SM and Tx90 was found to be particularly strong in
regions falling within the semi-arid and temperate regimes. This is consistent with the
physical feedback between low SM and an increase in sensible heating in the transi-
tional regime. Here, the energy balance is strongly coupled with the water balance such
that when a dry anomaly occurs, the following months will observe an increase in sen-
sible heating resulting in a direct positive temperature anomaly. This observation was
particularly strong in the southeast and northwest of Australia and was consistent with
�ndings by both Herold et al. (2016) and Mueller et al. (2012). However, this relationship
is much weaker in regions with little to no annual precipitation such as coastal south-
ern Australia and large parts of inland Western Australia. This may be explained by the
decoupling of surface SM with root zone SM under extreme dry conditions, as has been
identi�ed by Hirschi et al. (2014).

Williams et al. (2009) indicate that climate variation, in particular, in the south-east of
Australia is largely in�uenced by large-scale atmospheric dynamics and inter-annual
variability. Temperature extremes have been found to be directly in�uenced by large-
scale atmospheric circulation through horizontal temperature advection (Pezza et al.,
2011; Gibson et al., 2017a). Due to this, the relationship with ENSO is of particular in-
terest as it modulates the circulation conditions giving rise to the relationship between
itself and both temperature and precipitation. It has long been documented that there is
a strong relationship between ENSO and both temperature and precipitation (Dai et al.,
1997; Mullan, 1998; Evans et al., 2010; Hallack-Alegria et al., 2012).

Due to this, this chapter investigated the relationship between SM and Tx90 for summer
months exceeding +7 and -7 SOI (an SOI above +7 is associated with strong La Niña
events, while below -7 SOI with strong El Niño events). There appears to be a high level
of spatial variability in the magnitude of correlation coe�cients between SM and Tx90
associated with ENSO events across Australia (similar to those seen by Perkins et al.
(2015)). Compared to non-DJF months, it was determined that overall, an increase in the
correlation coe�cients between SPI and Tx90 across Australia exists, but this cannot be
solely attributed to the e�ect of ENSO on precipitation as there is a very large spatial
variability in the Tx90-SM relationship. Along with the e�ect of the IOD, SAM and the
Madden-Julian Oscillation (MJO) have on precipitation in Australia (Cai et al., 2009; Ris-
bey et al., 2009), Williams et al. (2009) suggest that changes in precipitation (and hence
SM) can be heavily in�uenced by the position of the southern hemisphere Hadley cell.
Likewise, the latitudinal position of the sub-tropical high-pressure maximum over Aus-
tralia is a signi�cant mechanism in�uencing the inter-annual variability of precipitation
rather than just solely ENSO (Pittock, 1971).
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Discussion - CHAPTER SUMMARY

Chapter Summary

This chapter introduces the key mechanisms behind the relationships driving an in-
crease in �re occurrence and intensity, namely, the location of the transitional zone, the
strength of the correlation between various moisture indices and their e�ect of soil mois-
ture on temperate extremes. Contrary to recent studies which indicate only semi-arid
regions are within the transitional zone, here, we show that large parts of the temper-
ate, semi-arid and savanna climate regions in Australia enter the transitional regime and
are neither strongly moisture nor radiation limited (Figure 5.2a, 5.2b). Arid and semi-
arid regions of Australia exhibit the strongest increase in the quantile regression slopes
(from low to high percentiles), indicating that months with low SM are highly likely
to experience a large number of Tx90 (Figure 5.4). However, Northern (savanna) and
southeastern Australia (Temperate) observe the largest correlation coe�cients between
changes in moisture and Tx90. Again, API appears to best represent patterns seen with
the AWAP s0 and has the largest negative-correlations with Tx90 in the transitional zone
(Figure 5.5). In conclusion, we show that API and MSDI observe the largest correlation
to surface soil moisture as well as a resulting increase in Tx90 with decreasing moisture.
These results are particularly strong in the transitional zone which comprises of parts of
the temperate, savanna and semi-arid regions in Australia. The following chapters will
explore how the aforementioned results impact on �re danger, occurrence, and intensity.
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CHAPTER6
Improving Fire Risk Estimation by

Investigating Fire Intensity, and Moisture
and Temperature Extremes

Overview Understanding the mechanisms behind forest �res and quantifying
their risk and scale is essential to mitigate their potential socioeconomic damage. The
previously established relationship between soil moisture and extreme temperature is
essential for understanding the energy and water balance within a region, particularly
in temperate/transitional regimes. Consequently, forest �res are often linked to mois-
ture de�cits, extreme temperature, and low fuel moisture. However, soil moisture is yet
to be investigated with context to the risk and likely intensity of forest �res. Fire Ra-
diative Power (FRP) can be a useful tool to quantify the impact and severity of �res and
is also dependent on temperature, moisture and vegetation conditions. Through these
relations, �re risk and its intensity are analysed spatially across Australia in this chapter.
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CHAPTER 6. INVESTIGATING FFDI, FRP, AND MOISTURE AND TEMPERATURE EXTREMES

6.1 Introduction

Australia, and more speci�cally south-eastern Australia experiences a large number of
forest �res and is generally considered one of the most �re-prone regions in the world
(Hennessy et al., 2005). Understanding the mechanisms behind forest �res and quanti-
fying their risk and scale is essential to mitigate their potential socio-economic damage.
The interaction between forest �res and atmospheric conditions is relatively well stud-
ied (Pereira et al., 2005; Trigo et al., 2006; Potter, 2012). In Australia, an increase in �re
danger is typically associated with high temperatures and strong winds ahead of cold
fronts, with �re spread particularly correlated to fuel as well as wind speed and direc-
tion (Cheney et al., 1994; Mills, 2005). For example, in south-eastern Australia, high wind
speeds may be sustained following a frontal passage if a front extends greatly into the
troposphere. As a frontal passage passes, north-westerly winds can shift south-westerly,
causing the �re to spread substantially as the previous �re-�ank becomes the head (Mills,
2005). This coupled with massive energy releases can produce convection columns, also
which accompanied by cyclonic winds in down-drafts, can exacerbate �re conditions
through downwind spotting (Martin et al., 2016).

When assessing the likelihood or risk of �re in a region several terms can be used. Eco-
nomical risk assessors consider ‘risk’ as the probability of �re, but also includes socio-
economic loss and value. This is compared to �re management services which typically
de�nes risk as the likelihood of ignition (Hardy, 2005). ‘Hazard’ is also used commonly
used and refers to the state of the fuel load whilst ‘severity’ speci�cally describes the ex-
tent of a �re on the wildland system. In other words, the ecological impact (Hardy, 2005;
Key et al., 2006; Keeley, 2009). Lastly, Beall (1946) describes �re ‘danger’ as including all
the items which quantify how and whether �res will start, what the spread and damage
are, and well as their containability.

Fire danger and risk can be de�ned using several metrics, and in general, spread, dam-
age, and containability are pertinent to incipient �res and their conditions and do not
present the likelihood of �re in a particular location. To this extent, typically, forest
�re danger is described using indices that incorporate atmospheric conditions such as,
surface air temperature, precipitation, relative humidity, wind speed, and fuel moisture.
Various �re danger indices exist, including the McArthur Forest Fire Danger Index (FFDI;
McArthur, 1967), the McArthur Grassland Fire Danger Index (GFDI; McArthur, 1967),

the Canadian Fire Weather Index (FWI; Van Wagner, 1987), the United States National
Fire Danger Ratings System (NFDRS; Deeming et al., 1972), the Fosberg Fire Weather
Index (FFDI; Fosberg, 1978).
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In Australia, the FFDI is used operationally by the Bureau of Meteorology and �re man-
agement services and is used in many studies to directly asses the level of forest �re
risk. Recently, there has been a large e�ort to increase their accuracy using the methods
mentioned previously and from various remotely sensed products. However, it has been
found that there is a large variation in the categorical classi�cation between such in-
dices (FFDI and FWI) at low index values (Dowdy et al., 2009). More particularly, several
studies have investigated improvements to the drought factor component of the FFDI,
as such Gri�ths (1998). This introduced a smoothing function for the drought factor
and consequently, it is used in Australia. Alternate drought factors have also been in-
vestigated such as by Snyder et al. (2006), which presented a fuel dryness index based
on biophysical principles associated with energy exchange, de�ned as the daily ratio of
sensible heat to available energy. They determined that the index was more responsive
to daily changes than most of the other indices, including the KBDI and the fuel mois-
ture code in the FWI, providing more accurate fuel dryness conditions of live vegetation.
Similarly, the KBDI (used within the drought factor) was modi�ed for a better adaptation
to Mediterranean conditions, also producing a faster response to daily to meteorological
conditions (Petros et al., 2011).

Generally, these studies suggest:

1. The drought factor should have a cumulative form based on the drought conditions
of the previous period (day), thus providing a faster response than the currently
used KBDI.

2. This factor should be expressed as a function of potential evapotranspiration (PET).
However, as PET is di�cult to accurately measure, a simple function inferring PET
through its formulation should be used.

3. The index should be initialised based on meteorological data and when the soil is
near saturation and this level is re�ected in its value.

Beyond this, the simplicity of such drought factors and �re danger indices has been
questioned. (Sharples et al., 2009), investigated the use of a simpler �re danger index
that is easy to calculate comparative to the FFDI indicating that they may be a useful
pedagogical tool in the context of �re danger and �re weather. Likewise, Liu et al. (2003)
substituted the API directly into the FFDI for the Goulburn River catchment in Australia
over a short time period following a large forest �re in the region. It was shown that API,
as a simple alternative to the drought factor, suitably represented the role of precipita-
tion or soil moisture in the calculation of FFDI. As mentioned, certain indices (e.g. FFDI
and GFDI) have been found to perform poorly when assessing the risk by high severity

106



CHAPTER 6. INVESTIGATING FFDI, FRP, AND MOISTURE AND TEMPERATURE EXTREMES

�res (Harris et al., 2011). The current FFDI and various other indices can be used to de-
termine the risk of the outbreak of forest �res, but such indices don’t describe the risk
of forest �res in terms of severity and intensity. Therefore particularly in Australia, the
current indices don’t provide the overall danger and risk of a �re for mitigation by local
�re authorities. This has been addressed conceptually by Harris et al., 2011, in which
a �re severity scale was proposed based on the size and rate of propagation of the �re.
The idea is that as there is an increase in the rate of propagation or perimeter spread of
the �re, a larger amount of fuel is consumed, releasing energy into the atmosphere. This
rate of energy released from the �re determines the severity of the �re.

There are many methods to determine the amount of energy released by �res resulting
from the combustion of fuels with a common method, �reline intensity being a measure
of the energy released along the front of the �re itself (Byram, 1959). Quanti�cation
of most methods such as �reline intensity provides substantial challenges with large
uncertainty in estimating, combustion e�ciency, fuel load, and type and the spread or
propagation of the �re itself. The severity and intensity resulting from the output of
energy from �res can be described by the total Fire Radiative Power (FRP) and Fire Ra-
diative Energy (FRE) of a �re. FRP is de�ned as the quanti�cation of the radiant heat
output from the �re (Roberts et al., 2005). FRP is a direct result of the combustion pro-
cess, where carbon is oxidised to CO2 (and other compounds) releasing energy stored
in the fuel as heat (Wooster et al., 2005; Ellicott et al., 2009). Therefore, FRP is the rate
of release of the radiative component that is, the higher the fuel consumption rate the
greater the FRP. Despite a higher sensitivity at night (Maier et al., 2013) as remotely
sensed retrievals improve, FRP and FRE are becoming more commonly used in studies
to describe �re severity and intensity (Wooster et al., 2005; Roberts et al., 2005; Ellicott
et al., 2009).

Independently, despite the long use of thematic mapping of FFDI and �re preconditions
such as temperature, soil moisture etc., the e�ect of soil moisture on both FFDI and par-
ticularly FRP is not well studied. As investigated in Chapter 5, Hirschi et al. (2010) and
Seneviratne et al. (2010) indicated a link between soil moisture de�cits and hot extremes
which is particularly strong in temperate climates potentially leading to exacerbated
conditions for severe �re. This coupled with the soil and vegetation moisture, leading to
the development, or drying vegetation can cause a greater fuel load and lead to higher
FRP �res (Hudak et al., 2016). As soil moisture is a key component in each of these pro-
cesses, this chapter aims to investigate its e�ect on both, comparing several commonly
used moisture indices, as well as their potential use, through the drought factor in the
currently used FFDI in Australia.
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6.2 Data and Methodology

6.2.1 FRP

In order to validate the e�ectiveness of each FFDI formulation, the FRP from �re hotspots
will be used. As mentioned in Chapter 3 can be used to derive both �re hotspots and
FRP. For the purpose of this chapter, the MODIS Collection 6 datasets, which provides
daily (from 8-daily) data at a resolution of 500 m are used. More speci�cally, the ther-
mal anomalies/�re locations MCD14DL product is used for both FRP and �re hotspot
retrieval. This product is derived from the swath products (MOD14/MYD14) rather
than the tiled MOD14A1 and MYD14A1 products (Giglio, 2015). Likewise, the MODIS
MOD13Q1 product is used for NDVI retrieval at 16-day intervals for a 250 m spatial res-
olution. Data for each product are obtained from the Land Processes Distributed Active
Archive Center (LPDAAC; https://lpdaac.usgs.gov/), and are upscaled to 5 km and 25 km
to match the spatial resolution of AWAP and the ESA CCI SM products, respectively.

6.2.2 ERA-INTERIM

The AWAP datasets do not include all input �elds required for the formulation of the
FFDI, and as such, relative humidity and wind speed have been sourced from the ERA-
INTERIM (The European Centre for Medium-Range Weather Forecasts’ re-analysis) dataset.
Similarly, ERA-INTERIM (ERA-I) has previously been used by the CSIRO (the Australian
Commonwealth Scienti�c and Industrial Research Organisation) to produce decadal FFDI
between 2006-2096 (Leonard et al., 2016). Daily surface relative humidity, and the sur-
face u and v wind components have been retrieved at a resolution of 25 km for Australia
between 1979 to 2015. As these data are available at four time steps daily, the 6 am
UTC (4 pm AET; Australian Eastern Time) time is used as this best corresponds to the
maximum daily temperature, minimum daily relative humidity, and the highest likely
instantaneous daily FFDI.

6.3 Results

As mentioned, �res are associated with warmer than normal temperatures, a high fuel
loading and in regions which are in moisture de�cit. Regions such as south-eastern and
south-western Australia have a large number of summer (DJF) �res such as the Black
Saturday �res in 2009 in Victoria, or the more recent �res of January and February 2014.
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Each of these years experience extreme temperatures and moisture de�cits throughout
the summer period. In late January 2009 areas of Victoria observed 3 or more consecu-
tive days above 40◦, this was similarly the case in 2014 with 5 consecutive days above
40◦. As mentioned �res such as these are the key motivation for investigating the pre-
conditions leading to forest �res and how the FFDI and consequent FRP are a�ected.
Section 3.5 describes how the FFDI is formulated based on the daily maximum temper-
ature, the surface wind speed, the relative humidity and the KBDI through the drought
factor. However, as established in Chapter 5, soil moisture plays a key role in in�uenc-
ing temperature extremes through its relationship with the partitioning of sensible and
latent heating, particularly in the transitional zone. The location of the Black Saturday
�res fall within this region, and as such, soil moisture, precipitation-driven indices, and
temperature extremes are investigated in relation to �res and their FFDI.

Each of the moisture indices as well as the key variables used to calculate the FFDI are
compared against each other for both Australia and for the Black Saturday �res in the
following sections. The FFDI is calculated using each moisture indices (derived from
AWAP), ERA-I data, and AWAP data for the 1979-2015 period. This temporal period has
been further limited to match the temporal period of MODIS (MCD14DL) derived FRP
and �re occurrence. All �res with a quality mask value greater than 70% (high certainty)
have been included resulting in 916,457 �res between 2000 and 2015.

6.3.1 ERA-I/AWAP FFDI versus ERA-Interim FFDI

As mentioned above (Section 6.2.2), a combination of ERA-I and AWAP data has been
used to produce FFDI. Despite the availability of temperature and precipitation among
other variables in the ERA-I dataset, it was decided that the combination of the two
products would achieve an FFDI dataset at a higher resolution than just using ERA-I
data (AWAP available at 5km whereas ERA-I is only available at 25km). Whilst, this is
not a “true” 5 km resolution dataset due to the aggregation of resolution the two prod-
ucts, it still provides FFDI at a higher resolution overall. A comparison between daily
FFDI derived using only ERA-I data (API-driven) and ERA-I/AWAP (KBDI-driven) was
produced to determine the degree of di�erence if any existed. Figure 6.1.a presents the
Pearson correlation, RMSE, and bias between the two products, as well as, against ERA-
I/AWAP (API-driven). The di�erence between API and KBDI driven FFDI is explored
further in the following sections, however, from Figure 6.1.a there is little di�erence be-
tween the two. For AWAP API driven FFDI, the average correlation coe�cient is 0.967
with a relative homogeneity across Australia, whilst for the ERA-I API product, the cor-
relation is 0.952 on average, with slightly lower correlations seen in coastal Western
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Australia. Both products have a low bias and RMSE with the main di�erences occurring
in alpine south-east Australia. This is further exempli�ed in Figure 6.1.b, which shows
the time series of the percentage change in the cumulative yearly FFDI for each of the
three products. Again, there is a good agreement between the products with the largest
di�erences occurring in 2000 and 2011. Both of these coincided with large negative FFDI
anomalies primarily driven by high precipitation events resulting in a larger variation
between products that use di�ering moisture components. Changes to input variables,
like precipitation, can have a substantial in�uence on the resultant FFDI and as such the
sensitivity of FFDI to its components is explored in the following section.
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Figure 1. Percentage change (compared to base period: 1979−2005) in yearly FFDI between 1979−2015 for CMIP5 Daily (blue line), CMIP5
Monthly (red line), AWAP API (orange line), AWAP KBDI (black line) and ERA Interim KBDI (dark green line).  Shaded areas indicate the 75th

and 25th percentiles of the CMIP5 ensembles.

(a)

(b)

Figure 6.1: (a) Skill metrics of the comparison of daily ERA-interim API driven FFDI and ERA-
interim/AWAP API driven FFDI against AWAP/ERA-Interim derived KBDI driven FFDI. Skill is based on
the Pearson correlation (left column), RMSE (middle), and BIAS (right column). All data are compared
between 1979 and 2015. (b) time series between 1979-2015 of the percentage change in cumulative yearly
FFDI for ERA-I API driven FFDI (blue-dotted line), ERA-I/AWAP API driven FFDI (red-dashed line), and
AWAP/ERA-I KBDI driven FFDI (black line).
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6.3.2 Sensitivity of FFDI to its Components

As identi�ed above, the FFDI di�ers varies both temporally and spatially due to changes
in the variables used as input. This is particularly the case for each moisture index, tem-
perature and wind speed. These changes are also strongly linked to the variation in FRP.
The sensitivity of such changes in FFDI due to its input variables can be quanti�ed both
as a whole and spatially and are important to determine the contribution of each in-
put variable in the FFDI. Respectively, Figure 6.2 and Figure 6.3 presents this sensitivity
on average and spatially for Australia. In order to isolate changes in FFDI due to each
variable, only one variable was changed whilst each other were kept constant at their
respective median values. The FFDI was then computed using the 0.01, 0.05, 0.1, 0.2, 0.3,
0.4, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99 quantiles for the given variable and consequently the
percentage change in FFDI from its median was determined.

The percentage change in FFDI (spatially averaged) versus quantile values is presented
in Figure 6.2 for each of; the drought factor, relative humidity, maximum temperature,
and the wind speed. Overall, across Australia, the FFDI has the greatest sensitivity to
relative humidity with maximum temperature and the drought factor showing similar
di�erences. The wind speed component has only a very small change (between -5% an
5%) in FFDI with increasing quantiles. Although linear regressions are produced for each
variable, the change in FFDI substantially di�ers from this at each the high and low tails.
Notably, the wind speed component increases from a change of 0% to about 60% between
the 0.75 and 0.99 quantiles.

Similarly, the spatial variation of the sensitivity to each FFDI component is presented
in Figure 6.3, however, only the di�erence between the median and 0.95 quantiles are
shown. As in Figure 6.2, the relative humidity, and temperature components have the
largest in�uence on FFDI on average, although there is a large amount of spatial variabil-
ity. Much like what is seen in the spatial variability in the mean maximum temperature
(see Figure 6.4c), there is a north-south gradient with an increasing change in FFDI due
to temperature. As previously, the wind speed has a negligible change FFDI at the 0.95
quantile. The most substantial changes in FFDI occur for the drought factor and the
relative humidity. Unlike Figure 6.2, the drought factor has changes in excess of 100%,
however, regions in which this occurs are restricted to the south-east and the south-west
of Australia. The sensitivity of FFDI to the drought factor is largely limited to the bias
toward dry conditions. Few regions within Australia have a mean drought factor be-
low 10 and therefore there are only marginal changes due to increasing percentiles (see
Figure 6.4a).
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Figure 6.2: Percentage change in FFDI between median values (calculated between 2000 and 2015) and
various quantiles values between 0 and 1 for drought factor (salmon), relative humidity, (green), maximum
temperature (blue), and wind speed (magenta). Also shown are the linear least squares regression for each
component and its 95% con�dence interval (shaded).

Figure 6.3: Percentage change in FFDI between median values (calculated using AWAP data between
2000 and 2015) and the 95th percentile (5th percentile for relative humidity) values for (a) drought factor,
(b) relative humidity, (c) maximum temperature, and (d) wind speed.
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Figure 6.4: Drivers of spatial sensitivity of FFDI to its components. (a) Median drought factor, (b) relative
humidity variance, (c) median maximum temperature, and (d) wind speed variance. Data are calculated
using AWAP data between 2000 and 2015.

Conversely, there are widespread changes in FFDI in excess of 100% for large portions
of Australia for the 0.95 quantile in relative humidity with the exception of central Aus-
tralia. This is due to a very small variance in relative humidity (see Figure 6.4b) in cen-
tral Australia as opposed to coastal Australia in which changes in relative humidity are
driven by evaporation.

6.3.3 Temporal Variation in FFDI and FRP

The frequency and distribution of �res, as well as the strength of the FRP, and the FFDI
spatially vary substantially, depending on the time of the year and the climate regime.
Therefore, prior to assessing how these vary in relation to the temperature, soil mois-
ture, and other metrics, the month [and season] in which the maximum FFDI, FRP and
�re occurrence for a given location are presented in Figure 6.5. The left column displays
the month and season of the maximum value spatially for Australia, whilst, the right col-
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umn displays a time series of the distribution of maximum values for all spatial points
separated into Köppen-Gieger climate regimes.

Figure 6.5: Month in which the maximum FFDI (a), maximum mean FRP (b) and number of �res (c)
occur, for all �res detected by MODIS between 2000 and 2015. Also shown are density plots indicating the
month of peak occurrence (pixel count) per Köeppen-Gieger Climate regimes (colour scheme is unrelated
to maps).

Visually from Figure 6.5, there is a substantial di�erence between the months in which
the maximum occurs for FFDI, FRP and �re occurrence. This is particularly noticeable
between the FFDI and the two MODIS-derived metrics. The FFDI calculated using AWAP
data as input indicates that there are three distinct seasons of �re danger. The maximum
FFDI shifting from the far north-west in July, then southward through September and
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October, eventually spanning the southern third portion of the continent by January.
Largely homogeneous compared to FRP and �re occurrence, the di�erences in the max-
imum FFDI shows a similar pattern to previously documented seasonal changes in �re
danger in Australia (Dowdy et al., 2009). There is also a strong similarity with the known
monthly and seasonal trends in maximum daily temperature across Australia (Jones et
al., 2000). This is highlighted by the lack of distinction between maximum FFDI accord-
ing to Köppen-Gieger climate regimes. Each climate regime has peaks in FFDI in October
with each regime having a varying distribution throughout the winter months. Only the
temperate, semi-arid, and arid region have a further peak in January, again with the dis-
tribution spanning either side of this peak. As expected, this is most noticeable with the
temperate regime, with the largest number of grid points with a maximum FFDI occur-
ring in January.

As mentioned, the spatial variation in both FRP and �re occurrence is much more dis-
persed. Despite this, there are large spatial variations across Australia. However, there
are still only minor di�erences between FRP and �re occurrence. The overall pattern
for both is similar to FFDI, in which, the maximums, shift from JJA in the north-west of
the country to DJF in the south-east and �nally MAM in the south-west. Contrasting
to FFDI, di�erences are noticed when comparing the Köppen-Gieger climate regimes.
There are clear distinctions between the month and season in which maximum FRP and
�re occurrence occur. The tropics and tropical savannas both have their maxima oc-
curring during the dry season (JJA months), whilst the semi-arid and arid regimes have
their maximums occurring during October, and to a lesser extent in April and January,
respectively. Lastly, the temperate regime has its maximum occurring in April. The
largest di�erence spatially between FRP and �re occurrence is observed in the tropical
savannas, where the largest number of �res occur in June with the maximum FRP occur-
ring between July and September. This observation is common to each climate regime,
albeit to a lesser extent. That is, for each climate regime the maximum FRP occurs in the
month proceeding the maximum �re occurrence. This is potentially due to the drying
out of vegetation due to larger maximum temperatures and elevated �re conditions over
an extended period, providing a drier, larger fuel load, producing larger more intense
�res.

Similarly, the di�erence in seasonal FFDI compared to the climatological mean (between
1979-2015), as well as the frequency of �res and their respective FRP are shown for each
climate regime in Figure 6.6. Seasonal anomalies are overlaid with both the total �re oc-
currences and mean FRP, with the degree of shading (purple) increasing with increasing
occurrence and FRP. The seasonal variation in FFDI occurs regionally and coincides with
the shifting changes in FFDI and mean FRP. Lower FRP �res typically occur during the
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JJA northern �re season despite the larger number of �res overall. There is a north-south
gradient in the change in FFDI for each season apart from autumn. In particular, during
the austral summer, there is a strong positive change across the entire bottom two-thirds
of the continent. The largest concentration of �res occurs throughout the Queensland
hinterland and the Australian alpine region. Here, the highest intensity �res occur in
alpine and south-west Australia. In autumn, despite only very small positive anomalies,
�re occurrence shifts to Tasmania, Mallee N.S.W, non-alpine Victoria, southern South
Australia, south-west Western Australia and the Kimberly region.

Figure 6.6: Seasonal FFDI anomaly (di�erence from mean) between 1979 and 2015 for Australia. Mean
Fire Radiative Power for the total seasonal (left column) MODIS derived �re hotspots between 2000 and
2015 are also displayed as density contours (purple scale). Also shown are the total number of �res per
season between 2000 and 2015 (right column).
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During JJA, both a strong positive change in FFDI and the concentration of �res are al-
most entirely isolated to the tropical savanna north Australia. However, as mentioned,
this does not necessarily translate to more intense �res. Typically, larger FRP �res occur
during the SON season further towards the center of Australia. Finally, during spring,
the savanna, semi-arid and arid regions of Australia observes a strong positive FFDI
anomaly and the largest number of �res.

These changes are also re�ected in Figure 6.6;right. Again, the largest number of �res
occur at a relatively low FRP, with the total number of �res below 200 MW exceeding the
combined number of �res exceeding 200 MW. This is particularly the case for the arid
and savanna regions, which generally have the largest number of low-intensity �res oc-
curring in DJF and SON, respectively. However, when comparing FFDI categories for
each of the arid and savanna regimes, there is a larger number of �res occurring at a
lower FFDI for the savanna regime than the arid regime. There is also a larger number
of �res at higher index categories, particularly for both the arid and temperate regimes
in the DJF period. This is also re�ected in their respective FRP. Higher intensity of �res
during this period occurs in each of the arid and temperate regimes.

From the total number of �res, there were 187817, 332437, 349741, 44399, 1970 and 93
�res from the low, high, very high, severe, extreme, and catastrophic FFDI categories,
respectively. From this, we can see a clear skew of the data toward lower FFDI �res with
95% of the �res coming from the lower three categories. In particular, there are only 93
catastrophic �res during the 2000-2015 period. As discussed previously, Figure 6.6:right
displays the frequency count of each FFDI category and increasing FRP categories (in 6
bins using the Jenks natural breaks classi�cation). The number of �res is heavily skewed
to the lower three FFDI categories, with a sudden drop thereafter. This is in contrast to
FRP which observes an exponential decline in the number of �res with increasing FRP.
Furthermore, the breakdown of each FFDI and FRP into the climate regimes is also con-
trasting. The proportion of �res across FFDI categories vary spatially, whereas the pro-
portions for each FRP category are consistent. This is with the exception of the tropical
regime which covers only a very small portion of Australia and likewise only a few �res
occur during the temporal period.

6.3.4 Fire Preconditions

As identi�ed in the previous section, the south-east of Australia observes the largest
change in FFDI in DJF compared to the other seasons. Likewise, the largest FRP �res
occur in this region during DJF. As mentioned, the Black Saturday �res are of particular
interest as they fall within the transitional zone, where changes in soil moisture are ex-
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pected to have the largest e�ect on temperature and consequently �res. Due to this, the
time-series of API, SPI, KBDI, MSDI, s0, DF, FFDI, FRP, relative humidity, precipitation,
surface wind, and maximum temperature are investigated here and shown in Figure 6.7.
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Figure 6.7: Time series of API, DF, FFDI, FRP, hurs (relative humidity), KBDI, MSDI, pr (precipitation), s0
(AWAP s0), sfcWind (surface wind speed), SPI, and tasmax (maximum temperature) ± 20 days either side
of the Black Saturday �res in Victoria in February 2009. Also included are the climatological 95th (or 5th)
and median percentiles for each variable between 2000 and 2015 (dotted and dot-dashed lines).

This depicts non-normalised values of each variable, plus and minus 20 days either side
of February 7th, 2009 (red line). Also shown are the median, the 75th, and 25th con�-
dence intervals (blue shading) from which averages were calculated (spatially averaged
for Victoria), as well as the 95th (or 5th; dot-dashed line) and median (dashed line) per-
centiles of the climatology for Victoria between 2000 and 2015.
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Each of, temperature, surface wind speed, relative humidity, and the drought factor were
near or exceeding their respective median climatological values in the lead period to
Black Saturday. Particularly for wind speed which was in excess of its 95th percentile
for the entire period. This culminated on the 7th with each of these variables exceed-
ing their 95th percentile climatological value. This resulted in an FFDI well in excess of
the long-term 95th percentile value. Despite the drought factor also exceeding its cli-
matological 95th percentile on the 7th, the KBDI only exceeds its median. Furthermore,
in the lead up to the 7th, the KBDI is well below its climatological median value. This
indicates that the soil moisture/drought conditions of the region were not above aver-
age in the lead up to the event. However, this observation is not accurately re�ected in
what is seen for the drought factor. Four moderate precipitation events occurred in the
lead up to the 7th contributing to a higher moisture content, however, the dry-o� period
between precipitation events are underestimated in comparison to the other moisture
indices. This is similar to what was observed in Chapter 4, in which, KBDI was found
to be largely wet biased, overestimating moisture across various sites in Australia. Con-
trastingly, both API and SPI observe sharp decreases in moisture (rapid dry-o�) in the
days leading to the �res, relative to KBDI. Noticeably, MSDI presents a similar pattern
to KBDI, whereas previously, MSDI had more closely resembled the patterns seen in
API. Despite the strong link between moisture and FFDI, the largest in�uence during
the Black Saturday �res is the surface wind speed, temperature, and relative humidity.
Each of these show a sharp increases/decreases on the 7th, contributing to the substan-
tial spike in FFDI (the sensitivity of these variables are shown later in this chapter). The
increase in FRP is similarly observed during the 7th despite several �res burning prior to
and after the event. Generally, the FRP is near or around the climatological median for
each �re. However, the FRP was far in excess of the previous climatological maximum
(post-2000) during the 7th.

The time series for each variable in Figure 6.7 presents an overview of the conditions
leading to the �res and their relative values compared to the climatology. However, it
does not indicate the spatial variability nor the location of the �res itself. Therefore, a
spatial time-series for the seven days leading up to, and including the Black Saturday
�res is presented in Figures 6.8 and 6.9. Each of the key contributing variables as well as
each of the moisture indices has had their respective climatological 95th[5th] percentile
(from between 2000 and 2015) removed. As before, intensity is given in the form of FRP
(MW). The magnitude of FRP is indicated using increasing diamonds relative to their
respective intensities. Figure 6.9 compares each of the moisture indices, whilst Figure
6.8 presents the remaining variables.
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Similar to Figure 6.7, in the lead up to the 7th, the largest positive (negative) anomalies
between the 95th (5th) percentile and daily values occur for wind speed, relative humid-
ity, and temperature. Anomalies are particularly strong in the interior of the state with
positive FFDI anomalies generally coinciding with positive wind speed anomalies. The
location of �res and particularly higher intensity �res coincide with positive wind speed
anomalies, as well as, temperature, and relative humidity anomalies. This is evident on
the 7th, with all �res located in regions where the key variables observe strong positive
(negative) anomalies with respect to their 95th (5th) percentiles.

Most notably, (with the exception of a region in the far north-east stretching to the south-
east), the drought factor indicates small positive anomalies almost uniformly across the
state in each of the days leading to the 7th. However, this is largely due to the �nite
scale, limiting values to a maximum of 10, compared to the continuous scales for each
other variable (excluding relative humidity). I.e. as the 95th percentile occurs at near
maximum potential values, exceedance will be limited in magnitude.

This is particularly noticeable in 6.9. Each of the moisture indices indicate small negative
anomalies in moisture compared to their climatological 95th (5th) percentile during the
7th. However, in the lead up to the 7th most regions observe small positive anomalies
in moisture, particularly in KBDI and MSDI. It has been highlighted previously that
KBDI tends to over-estimate moisture compared to the other indices. It should be noted
that for each moisture index, soils moisture is represented as extremely low, not just in
comparison to their climatological 95th or 5th percentiles. Despite this, the location of
�res coincides with regions of negative moisture anomalies. This is particularly strong
for API and SPI on the 7th. The relationship between moisture indices and both FRP and
FFDI are investigated further in the following sections.
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Figure 6.8: Time series of DF, FFDI, hurs (relative humidity), pr (precipitation), sfcWind (surface wind
speed), and tasmax (maximum temperature) in the seven days leading to the Black Saturday �res in Victo-
ria in February 2009. Each variable has had their respective climatological 95th[5th] percentiles (calculated
between 2000 and 2015) removed. Fire intensity and location is given as FRP in MW and indicated as in-
creasing diamonds relative to their size.
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Figure 6.9: Time series of API, KBDI, MSDI, s0 (AWAP SM), and SPI in the seven days leading to the
Black Saturday �res in Victoria in February 2009. Each variable has had their respective climatological
95th[5th] percentiles (calculated between 2000 and 2015) removed. Fire intensity and location is given as
FRP in MW and indicated as increasing diamonds relative to their size.
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6.3.5 Comparing FFDI computed using di�ering drought factors

Following on from the comparison between the moisture indices, each index has been
used to compute the FFDI and compared against FRP and the original KBDI-derived
FFDI. This has been done using two methods, i) through substituting each directly into
the drought factor component of the FFDI scaling each to be equivalent to the KBDI
(0-200) and, ii) through replacing the drought factor component by scaling each index
to the drought factor itself (0-10). Figure 6.10 compares each of these methods against
each other for the Black Saturday �res in Victoria on the 7th February 2009. Overlaid
onto each panel is the relative FRP for each �re in MW.
From �gure 6.10, there is little di�erence spatially (indices scaled to the DF) between
each index with only minor di�erences in the low, moderate and high categories near
Canberra. However, this is in contrast to �gure 6.10 where a large di�erence in the
FFDI occurs for each category and for each index. Where KBDI and SPI are scaled to
the DF they tend to underestimate high FFDI index categories compared to the origi-
nal formulation (non-scaled). In particular, in �re locations and towards the south-east
coastline. Overall, both MSDI and API are the most similar to the actual FFDI. From pre-
vious studies (Kumar et al., 2017) and results indicated here, KBDI indicates a large wet
bias throughout Australia, this appears to �ow through to the FFDI calculation. Con-
versely, API which has a slight dry bias accurately depicts the KBDI-derived FFDI. This
is partly because the API and the drought factor are calculated using a soil moisture de-
cay component. This is in the form of the number of days since and the amount of the
last rain event for the drought factor, and for the API, a decay factor derived from the
maximum temperate modulating the current API value. As the API implicitly includes
a decay component it tends to indicate the most similarities to the KBDI-derived FFDI.
Not only does API best correspond to how the drought factor is calculated but as from
previous results API shows the most similarities to the shallow layer soil moisture (in
situ and AWAP derived).

The di�erences in the two methods for producing the FFDI as identi�ed above are fur-
ther investigated in Figure 6.11. This compares the number of �res per FFDI category
produced using each of KBDI, MSDI, API, SPI, and s0 for the FFDI produced via replace-
ment of the KBDI and for the FFDI produced via scaling each moisture index to the DF
itself. As previously determined there is little di�erence when substituting each index
in place of the KBDI. The greatest di�erence occurs at both the low and the catastrophic
FFDI categories where the SPI and KBDI have the largest di�erence in the number of
�res than the other three indices. This is most noticeable when comparing the FFDI pro-
duced by scaling to the drought factor.
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In each category, SPI is substantially di�erent to the other indices. More so, there are only
very few �res occurring in the severe to catastrophic categories. However, it is observed
that there is a large reduction in the number of �res for each index at higher severity cat-
egories than those produced by replacing with the KBDI. This suggests that the drought
factor is skewed towards wetter conditions via this method and consequently fewer �res
occur at higher FFDI values. In fact, for KBDI, MSDI, and SPI there are no �res occurring
with an index category of catastrophic. As in Figure 6.10, API shares the most similari-
ties between each method of producing the FFDI and the KBDI-derived FFDI.

Figure 6.10: Maximum FFDI during the Black Saturday �res in Victoria on the 7th Feb 2009 calculated
using API, SPI, MSDI and KBDI. Overlaid on each plot is the maximum FRP (in MW) of �res during the
event with the relative size indicating the FRP scale. (a) Each moisture indices is scaled between 0-200
and replaced KBDI within the drought factor component of the FFDI. (b) Each moisture indices is scaled
between 0-10 and replaces the drought factor altogether.
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Similarly to Figure 6.11, Figure 6.12 presents the range of FRP values per FFDI category
for each moisture index both from replacing the KBDI and from scaling to the DF. The
FRP ranges are determined using the 25th and 75th percentile values in order to remove
outliers in the data (due to the small number of �res at higher FFDI categories). As
previously, there is little di�erence between the FRP ranges and FFDI categories when
replacing the KBDI except for MSDI at the catastrophic category. Likewise, as before,

Figure 6.11: Comparison of the number of �res per FFDI category produced using each of KBDI, MSDI,
API, SPI, and s0. (a) FFDI produced via replacement of the KBDI. (b) FFDI produced via scaling each
moisture index to the DF itself. The y-axis uses a log base 10 scale and total counts are labelled for each
index and each category. Data are for all �res in Australia between 2000 and 2015 (retrieved from MODIS).
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there are much larger di�erences when comparing indices scaling to the drought factor.
This is particularly the case for SPI. SPI consistently has a larger 75th percentile than each
of the other indices with this di�erence increasing with increasing severity category.
This increases from a factor of two to three between the severe and extreme categories,
with no �res occurring at the catastrophic category for SPI. As previously, API shows
the largest similarity with KBDI in all cases.

Figure 6.12: Comparison of the range in FRP (range between the 25th and 75th percentile values in FRP
in MW) per FFDI category produced using each of KBDI, MSDI, API, SPI, and s0. (a) FFDI produced via
replacement of the KBDI. (b) FFDI produced via scaling each moisture index to the DF itself. The 25th and
75th percentile values in FRP are labelled in the ‘bell-ends’ for each index and each category. Data are for
all �res in Australia between 2000 and 2015 (retrieved from MODIS).
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Table 6.1: Summary of the Pearson correlation coe�cients between each moisture-index derived FFDI
and the key components used to produce FFDI itself, as well as, FRP, and soil moisture.

Overall FFDI FRP DF Tmax RH Wind pr SM

FFDI API 0.993 0.182 0.356 0.582 -0.829 0.320 -0.139 -0.262
FFDI SPI 0.986 0.183 0.399 0.549 -0.815 0.323 -0.158 -0.308

FFD KBDI 1.000 0.182 0.407 0.588 -0.822 0.311 -0.135 -0.274
FFDI MSDI 0.997 0.182 0.376 0.583 -0.829 0.316 -0.135 -0.262

FFDI s0 0.992 0.182 0.335 0.584 -0.830 0.326 -0.134 -0.252
FFDI API Scaled 0.989 0.184 0.318 0.595 -0.836 0.324 -0.102 -0.248
FFDI SPI.scaled 0.951 0.191 0.3438 0.521 -0.817 0.336 -0.105 -0.284

FFD KBDI Scaled 0.928 0.153 0.367 0.642 -0.744 0.249 -0.060 -0.233
FFDI MSDI. Scaled 0.976 0.183 0.335 0.610 -0.808 0.291 -0.067 -0.228

FFDI s0 Scaled 0.980 0.184 0.255 0.601 -0.839 0.328 -0.073 -0.213

Temperate FFDI FRP DF Tmax RH Wind pr SM

FFDI API 0.979 0.171 0.405 0.664 -0.802 0.262 -0.114 -0.220
FFDI SPI 0.981 0.179 0.449 0.630 -0.784 0.257 -0.121 -0.259

FFDI KBDI 1.000 0.171 0.499 0.660 -0.779 0.235 -0.111 -0.240
FFDI MSDI 0.988 0.168 0.438 0.664 -0.800 0.251 -0.112 -0.221

FFDI s0 0.976 0.171 0.376 0.670 -0.809 0.266 -0.111 -0.205
FFDI API Scaled 0.976 0.172 0.377 0.685 -0.809 0.262 -0.085 -0.207
FFDI SPI Scaled 0.925 0.210 0.378 0.585 -0.751 0.263 -0.073 -0.238

FFDI KBDI Scaled 0.906 0.135 0.452 0.663 -0.691 0.182 -0.047 -0.163
FFDI MSDI Scaled 0.958 0.141 0.4016 0.691 -0.782 0.224 -0.054 -0.159

FFDI s0 Scaled 0.954 0.171 0.285 0.697 -0.821 0.273 -0.061 -0.162

Finally, these results are summarised in Table 6.1. This presents the Pearson correlation
coe�cients between each of the two FFDI methods for each index and KBDI-derived
FFDI. Also shown are the correlation coe�cients with the FRP, the drought factor, the
maximum temperature, relative humidity, wind speed, precipitation, and soil moisture.
The results observed previously are con�rmed with very high correlation coe�cients be-
tween each of the FFDI’s and the original KBDI-derived FFDI. This is particularly strong
for API which have coe�cients of 0.993 and 0.989 (for all �res) for replaced and scaled,
respectively. The KBDI has the lowest correlation of all the moisture indices when scaled
to the drought factor at 0.928. This is exacerbated when comparing correlation coe�-
cients for �res in only the temperate regime dropping to 0.906. Despite this correlations
are still extremely high suggesting that there is little di�erence in what moisture index
is used for producing the drought factor whether it be through direct substitution or by
scaling to the drought factor.

As identi�ed in Section 6.3.2, the FFDI is the most sensitive to changes in temperature,
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drought factor, and in particular, relative humidity. Correlation coe�cients are between
-0.839 and -0.691 for relative humidity, whilst for temperature, they are between 0.697
and 0.521, and for the drought factor between 0.285 and 0.499. Correlation coe�cients
are far lower for FRP with values between 0.210 and 0.135. However, the relationship
between the moisture indices and FRP are not directly related to the FFDI and are anal-
ysed further in the following section. On top of this, as mentioned in Chapter 2, the
location of �res and the consequent FRP are also in�uenced by the ignition source, fuel
load, and other mechanisms. As expected from the energy and moisture partitioning in
Chapter 5, the strength of the correlation between FFDI and the drought factor stronger
than the other FFDI components at locations within the transitional zone (by extension
the temperate regime).

6.3.6 Changes in Soil Moisture Conditions

As mentioned previously, the relationship between FRP and soil moisture has not yet
been studied. However, the preconditions leading to �res including soil moisture can
have a large in�uence on the location and severity of �res. Through the previous sections
and chapters, it has been established that de�cits in moisture can lead to exacerbated
temperatures and promote conditions for more intense �res. Therefore the relationship
between API, SPI, KBDI, MSDI, and s0 and FRP (�re intensity) are shown in Figure 6.13.
This displays normalised soil moisture values versus FRP from all �res in Australia be-
tween 2000 and 2015 (retrieved from MODIS). Each colour in Figure 6.13 represents the
Köppen-Geiger climate regimes and the size of each point indicates the relative severity
category in the FFDI. Also shown are the density distributions for both the x-axis and
y-axis margins.

For API and s0 there is a clear logarithmic relationship between a decrease in moisture
and an increase in FRP. This relationship is particularly strong in s0 with almost all �res
occurring with a normalised soil moisture value of less than 0.5. Whilst similar in shape,
the relationship in API is less pronounced. However, in either case, the distribution of
�res occurs tending almost entirely to zero. This is in contrast to KBDI, which has been
previously been shown to include a strong wet bias. The KBDI has an almost linearly
decreasing moisture content with increasing FRP and a distribution more evenly spread
throughout values, albeit skewed towards dry conditions. Interestingly, the MSDI shares
similarities between both API, and s0 and KBDI. For MSDI there is a far less pronounced
logarithmic relationship, particularly in the temperate regime, with a peak in the semi-
arid regime at about 0.2, otherwise, with other regimes, this tends to zero. Due to the
formulation of SPI (a �tted gamma distribution to the time series of rainfall), SPI observes
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a gamma/normal distribution of �res with FRP slightly shifted to dry conditions. This is
the clearest in both the semi-arid and the temperate regimes where there is a stronger
shift to dry conditions.

Figure 6.13: Normalised API, SPI, KBDI, MSDI, and s0 versus FRP (MW) for all �res in Australia between
2000 and 2015 (retrieved from MODIS). Each colour represents the Köppen-Geiger climate regimes and
the size of each point indicates the relative severity category in the FFDI. Also shown are the density
distributions for both the x-axis and y-axis margins.

For SPI there is a substantial di�erence in moisture between regimes in comparison to the
other indices. Generally, observations are very similar throughout each climate regime
with noticeable di�erences in the tropical (and to a lesser extent, temperate) regime due
to the smaller overall number of �res. The di�erences between regimes are more clearly
identi�ed in Figure B.2 and Figure B.3. Also shown in Figure 6.13 are the FFDI severity
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categories relative to increasing size. Generally, the higher severity categories are oc-
curring at a low moisture content and at higher FRP values. This is most pronounced for
API, s0, and MSDI whereas there is an even spread for all moisture and FRP values for
SPI and KBDI. This is in agreement with the results of the previous sections and chapters.

6.4 Discussion

This chapter investigated the change in FFDI and FRP across Australia in relation to the
temporal variation seasonally as well as the sensitivity of the input variables used to
calculate the FFDI and how it is related to both FRP and the moisture indices introduced
in Chapter 4. Typically, in Australia, an increase in �re danger is associated with high
temperatures and strong winds (Cheney et al., 1994; Mills, 2005). This coupled with a
de�cit in soil and vegetation moisture can lead to the drying of vegetation causing a
greater fuel load and lead to higher FRP �res (Chaparro et al., 2016; Hudak et al., 2016;
Chaparro et al., 2017).

Due to this, the seasonality of �res was investigated by identifying the month and season
of maximum FFDI and FRP across Australia, relative to their respective Köppen-Geiger
climate regimes. This is similar to the work of Oliveira et al. (2015), which detected
the seasonal di�erences in �re activity and intensity in tropical savannas of northern
Australia. Similar to Oliveira et al. (2015), the seasonality of �re severity and burn area
has been extensively studied for the tropical savannas of northern Australia (Williams
et al., 1998; Russell-Smith et al., 2003a; Russell-Smith et al., 2006; Harris et al., 2008).
Despite the spatial variation in changes in the �re season being investigated in Australia
(Dowdy et al., 2009; Murphy et al., 2013) as well as their link to known monthly and sea-
sonal trends in maximum daily temperature across Australia (Jones et al., 2000) seldom
has the seasonality of FFDI nor FRP been investigated across Australia.

The results in this chapter indicate that �re activity was typically the largest through-
out the northern Australia region particularly in the Northern Territory in the tropical
savannas. This occurred during the late dry season (SON) with the higher FRP �res also
occurring during this period. This also coincided with the maximum positive di�erence
in FFDI compared to previous seasons. This is in agreement to Oliveira et al. (2015),
which also indicated that for the Northern Territory median FRP was lower for early
dry season �res (29 MW on average) than late dry season �res (56 MW) and that this
was positively correlated with �re occurrence. This trend was similarly noticed spatially
across Australia and throughout each climate regime. The season of the maximum FRP
generally coincided with both maximum �re occurrence and maximum FFDI, although
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lagging by approximately one month. For the temperate/transitional regimes, this oc-
curred in February-April, whereas the maximum FFDI occurred in January. Overall the
change in maximum FFDI shifts from the far north-west in July, then southward through
September and October, eventually spanning the southern third portion of the continent
by January. As mentioned in Chapter 2, the FRP is heavily in�uenced by the fuel and
burn characteristics. Due to this, as the dry season (lowest relative humidity on average)
progresses, fuel moisture decreases promoting �re activity and more intense �res (Key
et al., 2006; Keeley, 2009; Chaparro et al., 2016; Hudak et al., 2016; Chaparro et al., 2017).
Fire activity occurs throughout the year, also during the wet season. However, these
occur at lower FFDI and FRP than in warmer conditions and are typically ignited by
lightning strikes ‘forcing’ a �re to occur (Russell-Smith et al., 2003b). As the vegetation
composition is largely made up of grassland in the tropical savanna (Russell-Smith et al.,
2003a), the largest FRP �res occur in the temperate/transitional regime, particularly in
alpine south-east Australia. However, these are typically characterised as having very
few �res per year compared to the north of the country.

Following this, the sensitivity of the resultant FFDI to each input parameter was also
assessed. It was found that generally across Australia, the FFDI is dominated by changes
in the relative humidity. However, there is a large spatial variation in the sensitivity of
parameters across Australia. This is particularly noticed in the south-east of Australia,
in which changes in the FFDI are a�ected equally by changes in the drought factor and
the relative humidity. This coincides with the temperate/transition zone, where it is ex-
pected that changes in soil moisture will signi�cantly a�ect the energy partitioning of
the region, as identi�ed in Chapter 5. This is in contrast to (Dowdy et al., 2009), which
found that the FFDI is most sensitive �rstly to wind speed, then secondly to relative
humidity and then thirdly to temperature. However, (Dowdy et al., 2009) also indicate
that the FFDI is more sensitive to temperature and relative humidity, and less sensitive
to wind speed, than other �re danger products. Furthermore, these sensitivities were
produced using case studies from �res at six locations with distinct climate characteris-
tics as opposed to spatially across Australia. Beyond this, as previously mentioned, the
sensitivity of the FFDI to soil moisture is intrinsically limited by the drought factor. i.e.
in regions with low average annual precipitation with infrequent events, the drought
factor is often near maximum, meaning that changes in the drought factor in these re-
gions will have a limited e�ect on the resultant FFDI.

Despite the di�erences to previous studies, the results shown here also indicate that there
are large discrepancies between categorical classi�cation at low and high index values
when adjusting the input variable. This is in agreement with (Harris et al., 2011) and
(Dowdy et al., 2009), who suggested that the current FFDI performed poorly when as-
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sessing high-risk �res. This is highlighted when using various moisture indices to drive
the drought factor. Both the SPI and s0 observe stark di�erences from the KBDI-derived
FFDI at both the lowest and highest FFDI categories, in particular when scaling to the
drought factor.

Finally, by substituting the KBDI with the API in the drought factor, the formulation
of the FFDI is simpli�ed greatly, requiring only temperature and precipitation (unlike
studies that further add to the complexity of the FFDI, such as; Gri�ths, 1998; Snyder
et al., 2006). Beyond this, by using the API, the drought factor provides both a physi-
cal relationship with soil moisture, as well as providing a more direct response to daily
variations in precipitation (as suggested by; Petros et al., 2011, and indicated in Chapter
4). This is in agreement with Liu et al. (2003), in which the exploratory analysis indi-
cated that API suitably represented the role of precipitation or soil moisture in the FFDI.
Results indicate that the API-derived FFDI (using an updated API compared to Liu et
al. (2003)) has higher correlation coe�cients than that of Liu et al. (2003) for maximum
temperature, relative humidity, wind speed, and the drought factor. This indicates that
not only is API a viable representation for soil moisture in the FFDI but that through
the recent re-formulation of the API this has been improved upon. Furthermore, here,
results indicate that despite the relatively small positive correlation between FFDI and
FRP, there is a strong logarithmic relationship between decreasing moisture and increas-
ing FRP. This logarithmic relationship occurs for API, MSDI, and the AWAP-derived s0.

Alternatively, results similarly show that the MSDI could also be used to represent soil
moisture. However, not as directly related to antecedent conditions as the API, the MSDI
allows for expressing the drought factor as a function of potential evapotranspiration
(suggested as a requirement by; Petros et al., 2011) and is also simpler to produce that
KBDI. Regardless which is used, both are simple to initialise at maximum moisture and
provide evidence that they could be used to provide a physical relationship to the likely
intensity of �re represented by FRP. Unlike previous studies (Sharples et al., 2009), the
intention of this chapter is not to provide a complete overhaul of the FFDI system, but
to provide �re managers with an accurate more physically related moisture component,
that also provides information on the likelihood of the intensity of a �re. In doing so,
a seamless transition between the currently used KBDI and API can be achieved opera-
tionally with minimal disruption.
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Discussion - CHAPTER SUMMARY

Chapter Summary

Following Chapter 5, the precursory weather conditions leading to forest �re and its
relative intensity in the form of FRP were investigated in this chapter. This was con-
sidered in relation to the previously established relationship between soil moisture and
temperature extremes both spatially for Australia and speci�cally for the devastating
Black Saturday �res. Typically, the FFDI varies temporally with the �re season shift-
ing from north in the June/July months, progressively further south through SON, then
to the south-east in DJF and the south-west later in the DJF season. This was similar to
previous studies, however, unlike previously, the seasonality of maximum FFDI does not
necessarily coincide with either the month of the maximum number of �res nor with the
maximum FRP. Generally, both the number of �res and the FRP occurred succeeding the
month of the maximum FFDI, with FRP lagging both marginally. Beyond this, the largest
FRP �res occur in the temperate/transitional regime further underpinning the e�ect of
soil moisture on temperature and relative humidity in these regions. This is also high-
lighted by the strong logarithmic relationship between a decrease in MSDI, API, and s0
and an increase in FRP, particularly in the temperate/transitional regime. Following this,
the moisture indices were substituted in place of the KBDI and the DF within the FFDI
calculation to determine the di�erence, if any, in the resultant FFDI. It was found that
there was little di�erence in the resultant FFDI, particularly with API suggesting that the
current formulation of FFDI is unnecessarily complex and replacing the drought factor
with API would su�ce. Consequently, the following chapter investigates the historical
and projected changes in FFDI for various climate change scenarios, uses an API driven
drought factor to produce FFDI.
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CHAPTER7
FFDI in a Changing Climate

Overview This chapter investigates historical and projected future changes in
FFDI (scaling API to the drought factor component) and its components for Australia
between 1979 and 2100. More speci�cally, historical CMIP5 model data used to derive
FFDI are compared against historical AWAP-produced FFDI. Projections of two CMIP5
forcing pathways, namely, the RCP 4.5 (medium climate change forcing) and RCP 8.5
(high climate change forcing) pathways are also compared against each other. An en-
semble of simulations from six global climate models each with a minimum of three
simulations is analysed, resulting in 29 members for each forcing pathway. Anomalies
in cumulative FFDI are assessed both on the seasonal and annual scale for the various
climate regimes across Australia.
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Introduction

7.1 Introduction

Vast regions of Australia su�er from a large number of forest �res and are generally
considered as some of the most �re-prone regions in the world (Hennessy et al., 2005).
Therefore, understanding the mechanisms behind forest �res and quantifying their risk
and scale are essential for mitigating their potential socio-economic damage. Forest �res
are often linked to precipitation de�cits, extreme temperature, increased wind speed, low
fuel moisture, and as demonstrated in Chapter 6, soil moisture.

As discussed in Chapter 6, the relationship between forest �res and atmospheric condi-
tions is relatively well understood (Pereira et al., 2005; Trigo et al., 2006; Potter, 2012). In
particular, �re conditions can be heavily exacerbated due to changes in synoptic weather
conditions, in particular, wind direction and speed. If fronts extend through the tropo-
sphere, high wind speeds ahead of cold fronts can be sustained through the front, often
resulting in a strong change in wind direction causing a developing �re front to increase
in size (Cheney et al., 1994; Turner et al., 1994). As projections of synoptic weather pat-
terns have a relatively high uncertainty, the associated changes in �re danger are less
well-studied (Clarke et al., 2011; Grose et al., 2014). However, changes in temperature
and relative humidity are more accurately projected and in Australia are typically asso-
ciated with changes in �re danger (de�ned here using FFDI). As introduced in Chapter 5,
de�cits in soil moisture are strongly related to an increase in temperature extremes and
in the number of hot days. This can, in turn, exacerbate the aforementioned conditions,
leading to a higher �re danger, as well as being directly related to an increase in �re
intensity (quanti�ed through FRP) as investigated in Chapter 6.

Fire risk is not only related to changes in synoptic weather conditions, but also to changes
in the climate system as a whole (Hennessy et al., 2005). As the Earth’s climate changes
due to anthropogenic forcing (Charlson et al., 1992), it is expected that an increasing
number of temperature extremes, precipitation de�cits, and consequently the parame-
ters associated with high �re risk will occur. Each is projected to change signi�cantly in
the future (Sherwood et al., 2010; Dai, 2013; Wang et al., 2013; Gibson et al., 2017b). It has
been identi�ed that in both observations and model simulations, that the spatial patterns
and magnitude of changes in temperature extremes and precipitation di�er between
global and regional scales (Donat et al., 2017). Speci�cally, Seneviratne et al. (2016) used
ensemble means of CMIP5 projections to show that changes in regional temperature ex-
tremes can di�er signi�cantly from the global mean. Partly, these regional increases in
hot extremes have been identi�ed as a result of the land-atmosphere feedbacks which
amplify aridity over land (Berg et al., 2016). This is particularly the case with feedbacks
of projected soil moisture decreases on land surface temperature, relative humidity, and
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precipitation (Berg et al., 2016). This has also been identi�ed by Seneviratne et al. (2013)
using GLACE-CMIP5 projections, where projected soil moisture changes were found to
substantially amplify temperature extremes in several regions in both boreal and austral
summer. Therefore, it is essential to investigate regional di�erences in hot extremes,
relative humidity, and precipitation de�cits associated with an increase in �re risk and
danger.

As mentioned in Chapter 2, several studies have investigated projected �re danger through
the 21st century both globally and regionally (Liu et al., 2010; Flannigan et al., 2013;
Stocks et al., 1998; Brown et al., 2004; Wotton et al., 2010) with Clarke et al. (2012), Hen-
nessy et al. (2005), Pitman et al. (2007), and Clarke et al. (2011) investigating changes in
the FFDI using GCM and RCMs across various locations in Australia. In each case, these
studies have so far focused on a speci�c region within Australia or using data from local
stations for comparisons across various climates within Australia and either looks into
historical changes or future projects but not both consistently. Whilst there are global
studies indicating the overall changes in �re danger for Australia, FFDI itself, which is
used operationally, has yet to be studied using an ensemble of GCM’s and RCM’s. This
shortcoming will be addressed in this chapter which assesses the changes in past and
future projections of FFDI, for Australia between 1979 and 2100 using climate model
simulations under the RCP 4.5 (medium climate change forcing) and RCP 8.5 (high cli-
mate change forcing) pathways from six modelling centres participating in the CMIP5
project. Cumulative FFDI produced from CMIP5 projections, as well as cumulative to-
tals and means of its input variables, are compared against AWAP-derived FFDI and
FRP. These are assessed both on the seasonal and annual scale for the di�erent climate
regimes across Australia.

Likewise, whilst various studies have compared historical changes in FFDI (Clarke et
al., 2012), and projected changes in FFDI on a regional scale (Pitman et al., 2007; Fox-
Hughes et al., 2014), this chapter addresses changes in �re danger, using a simple API-
driven FFDI in the context of the spatial variability across Australia, as well as with the
previously established relationship between soil moisture de�cits, the number of hot
days, and FRP (derived from MODIS). Furthermore, the accuracy of the ensemble mean
projected FFDI is improved over previous studies by increasing the number of ensemble
members, further reducing intrinsic biases from any particular model.
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Data and Methodology

7.2 Data and Methodology

7.2.1 Fire Danger Index (FFDI)

The McArthur Forest Fire Danger Index as de�ned in Chapter 3 is produced here us-
ing monthly mean maximum temperature (C◦), monthly mean wind speed (kmh−1),
monthly mean relative humidity (RH%), and the monthly mean Drought Factor (DF).
The DF is typically driven by KBDI, however, as it was determined in Chapter 6 that
API provides an accurate estimate for the DF, the FFDI is calculated using the monthly
mean API. The API is scaled to between 0 and 10 to match the range of the DF, where 0
indicates minimum drought conditions and 10 indicates maximum drought conditions.
Cumulative yearly FFDI and precipitation are calculated to reduce the seasonality of
monthly totals, as is the yearly mean maximum temperature, the mean relative humid-
ity and the mean yearly wind speed. Anomalies are relative to the 1979 to 2005 base
period and are described as a percentage per year change (anomaly). It should be noted
that in this chapter, the term “extreme” FFDI days does not refer to the“extreme” FFDI
category.

7.2.2 CMIP5

Daily and monthly climate data for Australia of maximum temperature, mean surface
wind speed, average surface relative humidity and total precipitation were retrieved
from the World Climate Research Program’s (WCRP) Coupled Model Intercomparison
Project Phase 5 (CMIP5) multi-model dataset. Historical data between 1979 and 2005 as
well as projected data from 2006 to 2100 were used to calculated FFDI as de�ned below.
From the �ve main Representative Concentration Pathways (RCPs), the historical, RCP-
4.5 (monthly only), and RCP-8.5 pathways were chosen as these represent the moderate
and high anthropogenic radiative forcing scenarios.

For the purpose of this study six monthly GCM’s, NCAR’s CCSM4, NSF-DOE-NCAR’s
CESM1-CAM5, CSIRO-QCCCE’s CSIRO-Mk3-6-0, MOHC’s HadGEM2-ES, NASA-GISS’s
GISS-E2-H and MIROC’s MIROC5 were used as these have smallest di�erence from the
ensemble mean RMSE (ensemble of all available CMIP5 models) in key variables such as
rainfall across Australia (Moise et al., 2015, for further details on CMIP5, refer to Chapter
3.2.3). Similarly, for the daily RCM’s these were, the two CSIRO-BOM ACCESS mod-
els, UMR-CNRM’s CNRM-CM5, NOAA-GFDL’s GFDL-ESM2G and MIROC’s MIROC5
model.

As FFDI is validated against �re occurrences which are available at 500 m resolution, the
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spatial variation in FFDI at the regional scale is of interest. Models were selected that
have a high spatial resolution and provide temperature, precipitation, relative humidity,
and the u and v wind components and a minimum of three ensemble members per histor-
ical (for monthly), RCP-4.5 (monthly), and RCP-8.5 pathways. This resulted in 29 ensem-
ble members from the six CMIP5 models per pathway for monthly data, and six models
for historical and RCP-8.5 pathways for daily data (see Table 7.1). One caveat of daily
CMIP5 data is the limited availability of both simulations and pathways. Access was
limited to only one simulation per model and only the historical and RCP-8.5 pathways.
However, the spatial resolution of each RCM is much higher than that of the GCM’s and
provides for a better comparison of local trends against the AWAP FFDI product. The
FFDI is calculated under the assumption that the drought factor can be substituted with
the simpler Antecedent Precipitation Index (API), requiring only precipitation and max-
imum temperature and is further detailed below. An overview of the models and their
resolution is available in Table 7.1. A full list of the models and providers is available
through the CMIP5 online portal (http://cmip-pcmdi.llnl.gov/cmip5/availability.html).

Table 7.1: List of models and number of ensemble members per scenario used in this study. Resolution
in pixels, globally (GCMs) and Australia (RCMs).

Center Model Scale Res Hist RCP 4.5 RCP 8.5
NCAR CCSM4 Global 288x192 3 3 3
NSF-DOE-NCAR CESM1-CAM5 Global 288x192 3 3 3
CSIRO-QCCCE CSIRO-Mk3-6-0 Global 192x96 10 10 10
MOHC HadGEM2-ES Global 192x145 4 4 4
NASA-GISS GISS-E2-H Global 144x90 6 6 6
MIROC MIROC5 Global 256x128 3 3 3
CSIRO-BOM ACCESS1-3 Regional 145x192 1 0 1
CSIRO-BOM ACCESS1-3 Regional 145x192 1 0 1
UMR-CNRM CNRM-CM5 Regional 256x128 1 0 1
NOA A-GFDL GFDL-ESM2G Regional 144x90 1 0 1
MIROC MIROC5 Regional 256x128 1 0 1

7.2.3 Regions

Unlike previous chapters, regions to be compared are de�ned based on the two regions
of Australia with the highest �re occurrences and intensities. Northern Australia and
south-eastern Australia are de�ned using the bounds of 10◦S − 25◦S, 120◦E − 145◦E,

and 45◦S − 25◦S, 135◦E − 155◦E, respectively. As these are regions with seasonal �re
occurrence, spatial averages have been produced using their respective �re seasons. i.e.
for south-eastern Australia, this is DJF or the austral summer period and for northern
Australia, this is the JJA, austral winter period.
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Results

7.3 Results

7.3.1 Historical and Seasonal Trends in FFDI between 1979 & 2015

The seasonal variation of �re activity has previously been proposed and maps of Aus-
tralia indicating these variations have been produced by many sources including the
Bureau of Meteorology and CSIRO (http://media.bom.gov.au/social/blog/50/australias-

Figure 7.1: Percentage change (anomaly) in cumulative yearly FFDI compared with the 1979-2005 base-
line. Mean Fire Radiative Power for the total yearly MODIS derived �re hotspots are also displayed as
density contours (purple scale) between 2000 and 2015.
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bush�re-seasons/ & Murphy et al., 2013). However, these have been seldom referenced
in terms of the shift in FFDI, nor has MODIS been used to validate the observed �re
occurrences. Leading on from Chapter 6, the change in FFDI over time has been inves-
tigated both with a decadal and seasonal context and referenced against FRP and �re
occurrence. Figure 7.1, shows the time series of cumulative yearly AWAP derived FFDI
as a percentage change (anomaly) compared to the 1979-2005 mean.

Figure 7.2: Decadal and seasonal FFDI trend for Australia for DJF, MAM, JJA, SON and 1980-1989, 1990-
1999, 2000-2009, 2010-, as well as the overall trend between the period 1979-2015. The mean climatology
has been subtracted for each period.

Overlaid on top of this are the mean FRP and the total yearly �re occurrences. Here we
can see that there are distinct periods of positive and negative anomaly across the time
series spatially. The most distinct period of warming occurs between 2002 to 2015 across
Australia with the exception of 2010 and 2011, prior to this, di�erences are inter-annual
with trends seldom lasting longer than one to four years. South-eastern Australia expe-
riences the largest positive anomaly between 1979 to 1982 and in 2002, 2006 and 2009.
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Results

These years coincide with signi�cant �re activity, particularly the Black Saturday �res
in 2009, the ‘Ash Wednesday �res’ in 1983 (1979-1982 conditions culminated in exacer-
bated conditions leading into 1982) and the ‘Great Divides’ �res in 2006. Conversely, a
large concentration of high-intensity �res is located in central Australia coinciding with
periods of large negative anomalies, in 2000 and 2011. This may be due to the mecha-
nisms explained in Chapter 6, in which, a lower FFDI is driven by a higher soil moisture
assists in vegetation growth leading to a higher fuel load, and more intense �res during
the JJA northern �re season.

Following this, the FFDI has been computed for the entire ERA-Interim period available,
1979-2015. From this, the seasonal and decadal trend has been calculated with the clima-
tology removed (to remove the seasonal cycle). Figure 7.2 displays this for each season
and the decadal periods 1980-1989, 1900-1999, 2000-2009, 2010-, as well as for the total
trend. All trends are given per period. The trend for the 1979-2015 period is also given
in Figure 7.3, however, this shows both the time series and maps for the trend in the
JJA (northern Australia) and DJF (south-eastern Australia) seasons/regions, as well as,
overall. It is seen that in Figure 7.3 the FFDI is generally increasing for the entire pe-
riod and throughout each season of the year, almost evenly. This is particularly the case
for the millennial period, which observes very strong trends, this period coincides with
the ‘Millennial Drought’ which exacerbated FFDI conditions considerably. Despite this,
there is a small negative trend in the Queensland hinterland, most noticeably, in DJF.
The opposite is seen during the 1990’s decade, which observes large negative trends,
most noticeably in the north of the continent with little to no trend is seen in the 1980’s
apart from in the north-west of Australia in DJF.

Interestingly, large portions of coastal Australia observes a negative trend in FFDI over-
all, with Broome and coastal NSW showing particularly strong trends. When breaking
this up into seasonal trends, the spring period has the largest positive trend which ac-
counts for the majority of the overall observed tend, whilst to a far lesser degree, both
DJF and MAM show a mixture of positive and negative trends. During the WA �re sea-
son (as established previously), in autumn, almost the entire state observes a decreasing
trend in the FFDI, particularly, during the 1990’s and the 2010-2015 period.

These trends are further examined in Figure 7.3. Here, the percentage change (compared
to the 1979-2005 base period; anomaly) of cumulative FFDI between 1979 and 2015 are
averaged for all months, DJF months and JJA months. The most prominent �re occur-
rences and di�erential in FFDI occur in the north of Australia in JJA and in the south-east
of Australia in DJF (Figure 6.6; Murphy et al., 2013), due to this averages are calculated
using DJF and JJA months, from the south-east and northern Australia regions, respec-
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tively. This con�rms the patterns seen from Figure 7.2 in which in the 1980’s and 1990’s
there are small negative trends with the post-millennial period observing an increase in
FFDI. This is partly due to the limited scope of the base period, i.e. only a 26 year period
spanning the beginning of the time-series. Interestingly, the overall FFDI trend for DJF
has a slightly negative trend of 0.114% per year compared to the JJA period of positive

Figure 7.3: Percentage change (compared to the 1979-2005 base period; anomaly) in yearly FFDI between
1979-2015 averaged across Australia for all months (a), averaged across northern Australia for JJA months
(b), and averaged across south-eastern Australia for DJF months (c). FFDI are derived from AWAP obser-
vations (black line). Also shown are the overall (dashed orange line), and decadal (dashed red line) trends.
Trend values are displayed per decadal period as well as for the overall timeseries.
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0.260%. This can be attributed to the substantially large FFDI decrease in 2010 and 2011,
particularly in coastal regions, biasing results. This is less prominent in JJA and hence
a strong positive trend is seen. This large negative anomaly also accounts for the very
large positive trend seen in the 2010-2015 period, as subsequent years each have positive
anomalies in FFDI. Due to the length of the record, it may be more suitable to compare
the overall trend rather than just decadal anomalies.

Following comparing the trend the cumulative yearly FFDI, the trend in extreme �re
danger days the is also explored and shown in Figure 7.4. Not only is the overall trend of
FFDI important to the likely increased activity of �re due to climate change, however, as
mentioned in Chapter 2.4, the extremes of temperature, precipitation, soil moisture, and
consequent extreme FFDI days are also likely to change substantially. Figure 7.4 shows
the trend overall and seasonally, in the number of days exceeding an FFDI of either 25 or
50. This is done both spatially across Australia (Figure 7.4.b, c, e, f) and also on average
(7.4.a, d).

Similarly to Chapter 6, there are few days in which FFDI exceeds the severe category
(>50). Here, anomalies vary between ± 8 days and consequently the trend in extreme
days is as little as± 1-2 days per decade. However, there is a clear positive trend in days
>50 FFDI both overall and across Australia, as well as, during each season. This trend is
spatially and seasonally dependent with the smallest and in some cases, negative trends,
occurring in W.A in MAM and in JJA overall. As identi�ed in Chapter 6, typically, �res
in the northern regions of Australia occur at a lower FRP and also lower FFDI due to a
lower extreme maximum temperature than in the south of the country.

This trend is exacerbated when considering the number of days exceeding the ‘very
high’ FFDI category (i.e. FFDI >25). Here, there are more extreme days in MAM and JJA
than when the FFDI exceeds 50. This is particularly the case post-2000, where there are
years with substantial di�erences between the two anomalies. As previously identi�ed
in this chapter, both 2000 and 2011 have substantial negative anomalies in contrast to
the overall positive trend. This contributes to a much smaller linear trend seen overall
in the 1979-2015 period. The largest trends tend to occur inland, particularly in SON and
DJF. Overall this contributes to a trend in excess of 10 days with an FFDI >25 in some
regions. Despite the high variation in daily FFDI and potentially extreme FFDI days,
there is little di�erence in the trend observed when comparing extreme FFDI days and
monthly/yearly cumulative FFDI, albeit at a lower magnitude (discussed in the following
sections).
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Figure 7.4: (a) Number of AWAP derived extreme FFDI days [FFDI > 50] between 1979-2015 (anomaly
from 1979-2005 mean) averaged for Australia. Anomaly per year (black line), anomaly per season (dark
green: DJF; light green: MAM; dark blue: JJA; light blue: SON). The mean FFDIx from the CMIP5 ensemble
is derived from daily historical and RCP 8.5 data. (d) same as (a) for the number of days with FFDI > 25.
Maps of the trend in FFDIx per year between 1979 âĂŞ 2015 for FFDI > 50 (b) and FFDI > 25 (e), and per
season for FFDI > 50 (c) and FFDI > 25 (f).
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7.3.2 Trends in FFDI between 1979 & 2100

Using projections from the CMIP5 models, the FFDI record can be extended to provide an
overview of the potential change in FFDI during the 21st century. Similarly to the previ-
ous section, monthly and yearly trends of FFDI (compared to the 1979-2005 base period)
were produced for CMIP5-derived FFDI (both daily and monthly CMIP5) for Australia.
Both the percentage change (anomaly) in FFDI, as well as, the di�erence in the number
of days exceeding an FFDI of 25 and 50 were produced. The northern and south-eastern
regions are separated into their respective JJA and DJF �re seasons in section 7.3.2. As
mentioned previously, unless otherwise speci�ed, extreme FFDI refers to FFDI in excess
of either 25 or 50.

Prior to investigating trends in FFDI, daily and monthly CMIP5 products have been com-
pared against AWAP and ERA-Interim data to assess the skill and accuracy of projections.
Due to the uncertainty in precipitation projections, it is expected that there be consid-
erable di�erences between products and the computed FFDI overall. This is outlined
in Figure 7.5, which assess the skill of precipitation, maximum temperature, relative hu-
midity, and surface wind speed using the Pearson correlation, RMSE, and bias as metrics.
As with previous studies (see Chapter 2), there is little agreement spatially and on aver-
age between AWAP and CMIP5 (monthly means) precipitation. This is similarly the case
with relative humidity and surface wind speed. However, it should be noted that there
are di�erences between the measurement periods between the ERA-Interim and CMIP5
products. Both the relative humidity and surface wind speed are instantaneous mea-
surements that are aggregated to monthly means, whilst, for the CMIP5 data, these are
averages as produced by model output. There is a stronger agreement between monthly
means of maximum daily temperatures, with correlation coe�cients in excess of 0.2 for
large portions of the country and on average a correlation of 0.126. Despite the discrep-
ancy between the products, with the exception of precipitation, for each variable, there
is a negligible bias and only a minimal RMSE.

Following this, the FFDI was computed for both the CMIP5-daily (denoted as CMIP5d)
and CMIP5-monthly (denoted as CMIP5m) data and the cumulative yearly FFDI was pro-
duced. In the following analysis, CMIP5d is averaged monthly for comparison to AWAP
and CMIP5m data. For example, cumulative yearly FFDI is calculated by multiplying
by the number of days per month by the monthly mean for each product. As shown in
Figure 7.6.a, the agreement between AWAP and CMIP derived cumulative yearly FFDI is
fairly low, particularly with the daily product which has an average correlation coe�-
cient of -0.054, whereas the monthly product has a correlation of 0.215 on average across
Australia. Most noticeably, in the south-east of Australia, the correlation coe�cient is
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Figure 7.5: Skill metrics comparing monthly CMIP5 and AWAP input variables used to derive FFDI. Skill
is based on the Pearson correlation (left column), RMSE (middle), and BIAS (right column). All data are
compared between 1979 and 2005. (top row) precipitation, (middle-top row) maximum daily temperature,
(middle-bottom) relative humidity, and (bottom) surface wind speed.

as high as 0.5. Again, the bias between the products is minimal, particularly with the
monthly product, which slight overestimates cumulative yearly FFDI. The daily product
tends to underestimate FFDI across Australia and has a relatively large RMSE compared
to the monthly product (21.32 compared to 16.65). From the time series in Figure 7.6.b it
can be seen that whilst there are some years in which the percentage change in yearly
cumulative FFDI resembles AWAP, on a whole, there are large di�erences between the
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products. However, at �rst glance, there are much closer similarities between trends
over the 1979-2015 periods. As the following sections investigate, there is often a strong
agreement between trends produced by AWAP derived FFDI and that from the CMIP5
data, particularly with the extreme FFDI days trends. These results indicate that there
is some work to produce accurate projections of FFDI for forecasting purposes. Partly
these di�erences can be attributed to the aggregation of means due to the di�erences
in spatial and temporal resolution. However, due to the consistency in the use of the
variables used to produce FFDI from CMIP5 data it is acceptable for the purpose of trend
assessment.

Figure 7.6: (a) Skill metrics of the comparison between AWAP derived cumulative yearly FFDI and both
CMIP5 daily and CMIP5 monthly products. Skill is based on the Pearson correlation (left column), RMSE
(middle), and BIAS (right column). All data are compared between 1979 and 2005. (b) time series of the
percentage change in cumulative yearly FFDI between various products including CMIP5 daily and CMIP5
monthly driven FFDI. CMIP5 time series includes the historic and RCP 8.5 pathway betwen 1979 and 2015.
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Daily & Monthly FFDI trends between 1979 & 2100

Following from the previous section, the trend monthly FFDI between 1979 and 2100
have been compared between the AWAP, CMIP5d and CMIP5m derived products. Figure
7.7 shows these trends for Australia (all months; Figure 7.7.a), for the northern Australia
region (JJA months; Figure 7.7.b), and for the south-east region of Australia (DJF months;
Figure 7.7.c).

As with previous AWAP-derived FFDI trends, there is a strong negative trend of between
-6 to -10 % per decade across the coastal south-east of Australia as well as coastal West-
ern Australia and the Kalgoorlie region (extending into the Nullabor plains) with large
positive trends seen throughout inland Australia (in excess of 10% per decade), partic-
ularly in Queensland (Figure 7.7.a). In CMIP5m-derived historical FFDI, there are small
positive trends in the south-east of the country extending into the semi-arid and arid re-
gions (inland) with the small negative trends being observed in the Broome (north-west)
and Kalgoorlie regions. Interestingly, in each case a smaller trend in FFDI for Tasmania
compared to mainland Australia is seen. Similarly, a negative trend is seen for CMIP5d-
derived historical data, albeit, with a magnitude more similar to AWAP, particularly in
Queensland. However, in contrast to CMIPm, there is actually a very small positive trend
in FFDI. With the exception of south-west Australia, the CMIP5d product most closely
resembles the trends seen in the AWAP product between 1979 and 2005. Both RCP 4.5
and RCP 8.5 (CMIP5m and CMIP5d) pathways show large positive trends across Aus-
tralia, with the largest trends seen in CMIP5d’s RCP.5 projections.

As mentioned before, seasonal trends were also produced for the DJF and JJA regions,
shown in Figure 7.7.b and 7.7.c. These show contrasting patterns to the overall trends
seen across Australia for all months. For JJA months, the largest FFDI trends are seen
in northern Queensland for both the historical and the observational datasets. A similar
pattern is observed between the three datasets, however, the magnitude of the trend is far
smaller in the CMIP5m produced FFDI compared to CMIPd and AWAP. Partly, this di�er-
ence can be attributed to the larger variance in FFDI values from the AWAP and CMIP5d
datasets as daily maximum wind speed, as opposed to monthly mean wind speed, is
used as input. In addition, CMIP5 is also produced from an ensemble of models and
simulations, further reducing variation, as well as, the aggregation of contrasting values
due to the lower resolution of the products. Furthermore, di�erences in the observed
patterns between datasets are largely dependent on the moisture or drought component
(precipitation-based) used to drive FFDI, which as discussed previously, incur large un-
certainties.
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Figure 7.7: Linear trend in monthly percentage change (anomaly) in FFDI between 1979-2100 across Aus-
tralia for all months (a), northern Australia in JJA (b) and for south-eastern Australia in DJF (c); for AWAP
observations between 1979-2005, as well as, daily (CMIP5d) and monthly (CMIP5m) CMIP5 simulations
from historical, RCP 4.5, and RCP 8.5 pathways. CMIP5m data are based on an average ensemble of 29
members from 6 model outputs. CMIP5d data are based on an ensemble of 6 model. Anomalies are de�ned
as the percentage change from the 1979-2005 mean per year.
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From Figure 7.7.b and 7.7.c, there is distinctly negative trend in DJF in southern Queens-
land and northern New South Wales is shown for each of the historical datasets. Each
shows similar patterns, however, some di�erences can be seen in the south-east coast
and in Tasmania. Both the RCP pathways observe positive trends in FFDI across the en-
tire region, particularly for the RCP 8.5 pathway and as previously the CMIP5d product
has an increase in the magnitude of trends compared to CMIP5m. The strongest trends
are seen in the arid center portions of the region.

Di�erences in RCP 4.5 and RCP 8.5 derived FFDI trends between 1979 & 2100

CMIP5m projections of monthly total precipitation, maximum mean temperature, mean
relative humidity, and maximum mean wind speed is used to produce monthly API and
consequently FFDI. This is used to assess the change in FFDI using two climate path-
ways (RCP 4.5 and RCP 8.5), indicating a medium and large e�ect on climate change
due to radiative forcing. As only the CMIP5m product has both the RCP 4.5 and RCP
8.5 pathways (due to availability), this is used for the following analysis. Both the his-
torical CMIP5m and observationally based AWAP data have been used to produce FFDI
using similar monthly values as previously discussed and used to reference against pro-
jected changes. API is again used to drive the drought factor component of the FFDI
to remain consistent when comparing against projected values. As AWAP and CMIP5m
datasets di�er in the magnitude of FFDI, the cumulative yearly FFDI is calculated as an
anomaly compared to the 1979-2005 base period (anomaly) and has been derived for
the entire time-series for each dataset. Likewise, the mean yearly relative humidity, the
mean yearly wind speed, the mean yearly temperature, and the cumulative yearly pre-
cipitation are also computed and compared for each dataset.

Figure 7.8, shows each of the four variables used to calculated FFDI for the 1979-2100
period. The percentage change (anomaly) of the historical, observational, RCP 4.5 and
RCP 8.5 are averaged for Australian. Also included are the .25 and .75 ensemble per-
centiles bounds for each of the RCP 4.5 and RCP 8.5 pathways. From Figure 7.8 we
can see that there is a substantial negative trend in the relative humidity and cumula-
tive precipitation across the entire 1979-2015 with similar trends noticed for each RCP
pathway. Conversely, there appears to be a very small negative trend in surface winds
if at all, with no di�erence between pathways. There is a consistent positive trend in
maximum temperature which is consistent with other studies investigating changes in
maximum temperature. The projected trend in RCP 8.5 continues to increase throughout
the 21st century deviating slightly from the RCP 4.5 pathway which stabilises at about
2075. These variables combine to produce a noticeable trend in FFDI throughout the
time series.

152



Results

0.095

0.025

Trend 

 [% change / yr]

0.103

0.036

0.164

0.083

0.087

0.076

0.011

0.081−20

−10

0

10

2000 2025 2050 2075 2100

Year

%
 C

ha
ng

e

   Historical

   Observations

   RCP 4.5

   RCP 8.5

Change in Yearly hurs between 1979−2100 [Average]

Figure 1. Percentage change (compared to base period: 1979−2005) in yearly hurs between 1979−2100 averaged for Average for historical
(black line), RCP 4.5 (blue line), RCP 8.5 (red line) ensemble CMIP5 models. Also shown are observational hurs derived from AWAP (orange
line). Shaded areas indicate the 75th and 25th percentiles of the ensembles. In total 29 ensemble members are used from 6 CMIP−5 model

outputs.

(a)

0.796

0.006

Trend 

 [% change / yr]

0.331

0.034

0.535

0.185

0.251

0.122

0.023

0.167

−50

0

50

100

2000 2025 2050 2075 2100

Year

%
 C

ha
ng

e

   Historical

   Observations

   RCP 4.5

   RCP 8.5

Change in Yearly pr between 1979−2100 [Average]

Figure 1. Percentage change (compared to base period: 1979−2005) in yearly pr between 1979−2100 averaged for Average for historical (black
line), RCP 4.5 (blue line), RCP 8.5 (red line) ensemble CMIP5 models. Also shown are observational pr derived from AWAP (orange line).

Shaded areas indicate the 75th and 25th percentiles of the ensembles. In total 29 ensemble members are used from 6 CMIP−5 model outputs.

(b)

0.012

0.002

Trend 

 [% change / yr]

0.030

0.002

0.006

0.003

0.002

0.025

0.002

0.017

−4

−2

0

2

4

2000 2025 2050 2075 2100

Year

%
 C

ha
ng

e

   Historical

   Observations

   RCP 4.5

   RCP 8.5

Change in Yearly sfcWind between 1979−2100 [Average]
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Figure 7.8: Percentage change (compared to base period: 1979-2005; anomaly) in yearly mean relative
humidity (a), cumulative precipitation (b), mean surface winds (c), mean maximum temperature (d), be-
tween 1979-2100 averaged for Australia for historical (black line), RCP 4.5 (blue line), RCP 8.5 (red line)
ensemble CMIP5m models. Also shown are observational �elds derived from AWAP (orange line). Shaded
areas indicate the 75th and 25th percentiles of the ensembles. Trend values are displayed per decadal pe-
riod for RCP pathways and for the total period for historical and observational data. In total 29 ensemble
members are used from six CMIP5 model outputs
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Figure 1. Percentage change (compared to base period: 1979−2005) in yearly FFDI between 1979−2100 averaged for Average for historical
(black line), RCP 4.5 (blue line), RCP 8.5 (red line) ensemble CMIP5 models. Also shown are observational FFDI derived from AWAP (orange
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outputs.Figure 7.9: Percentage change (compared to base period: 1979-2005; anomaly) in yearly cumulative FFDI
between 1979-2100 averaged for Australia for historical (black line), RCP 4.5 (blue line), RCP 8.5 (red line)
ensemble CMIP5m models. Also shown are observational FFDI derived from AWAP with the drought
component driven by KBDI (orange line). Trend values are displayed per decadal period for RCP pathways
and for the total period for historical and observational data. Shaded areas indicate the 75th and 25th
percentiles of the ensembles. In total 29 ensemble members are used from 6 CMIP5m model outputs.
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The average anomaly in cumulative yearly FFDI for observational, historical and climate
pathway datasets is shown in Figure 7.9, presenting similar trends to Figure 7.8. As ex-
pected due to the trends in each of the variables driving FFDI, a strong positive trend
is also re�ected in FFDI. This is particularly noticeable for the RCP 8.5 pathway which
exhibits an increase in FFDI of up to 35% by the end of the century, similarly, the RCP
4.5 pathway indicates a positive anomaly of up to 20%. The majority of this di�erence
is during the latter 50 years where there is a large di�erence in the trends, with values
decreasing from over 0.3 % per year to 0.043% for RCP 4.5, while for RCP 8.5, trends
are continuing to increase throughout the century nearing 0.4% per year. There is also
a larger di�erence in the percentile bounds of model values by the end of the century.
This indicates that there are a greater variation and uncertainty in model output in the
RCP 8.5 pathway increasing in time.

Similarly, �gure 7.10 compares the FFDI calculated at JJA months and DJF months for
the northern-Australian and the south-eastern Australian regions, respectively. Again,
in each case the general trend is increasing for each climate pathway, however, the JJA
months in northern Australia appear to have a larger positive anomaly by the end of
2100. This is also noticed when comparing the observational FFDI between the two sea-
sons. Despite a large negative anomaly di�erence in cumulative FFDI in 1986 and 1995
in JJA, there is a positive trend of 0.157 which compares favourably to the historical
CMIP5m trend of 0.194, whereas, there is a far greater variation in the FFDI seen in the
observations for DJF. This can be partly explained by the e�ect of precipitation de�cits
due to the millennial drought, which was far more prominent in south-eastern Australia
than northern Australia (van Dijk et al., 2013). Here the trend is 0.007 compared to 0.169
for the historical CMIP5m based FFDI. This is largely due to the in�uence of the large
negative trend in observations in the late 1980’s and in the 1990’s as mentioned in the
previous section. When comparing the climate pathways a similar pattern is seen for
both seasons, in which both pathways appear to increase at a similar rate until the latter
part of the 21st century, most noticeably in the last 10-15 years in DJF. Interestingly there
is a slight negative trend in DJF for RCP 4.5 in the last 25 years of the 21st century. Some
of these di�erences can be attributed to the seasonal variation in the models selected as
well as the spatial variation in FFDI between models, as detailed further, below.

The monthly variation in the change in FFDI at 2050 and 2100 for each model on average
and for the northern and south-eastern Australia regions are presented in Figure 7.11.
The mean of the 10 years leading up to 2050 and 2100 are used to indicated mid-and
end-of-century change. The most signi�cant di�erence seen in Figure 7.11 is between
the CSIRO-Mk3-6-0 and HadGEM2-ES models compared to the other four models. The
former predicts a far larger anomaly for each month, particularly the CSIRO-Mk3-6-0
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model shows high levels of di�erences to the others, both in magnitude and in inter-
annual patterns. Generally, there is a substantial di�erence between months across all
models with a large contrast seen between the northern and south-eastern regions. Typ-
ically, the south-eastern region has the largest di�erences in spring whilst, the largest
di�erences in the northern region occur in summer and autumn seasons, however, as
established these are not necessarily aligned with the �re seasons. Likewise, as men-
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Figure 7.10: Percentage change (compared to base period: 1979-2005; anomaly) in cumulative yearly
FFDI, between 1979-2100 averaged for DJF in South-Eastern Australia (a) and JJA in Northern Australia
(b). Shown are averages of; historical (black line), RCP 4.5 (blue line), RCP 8.5 (red line) ensemble CMIP5m
models. Also shown are observational �elds derived from AWAP (orange line). Shaded areas indicate
the 75th and 25th percentiles of the ensembles. Trend values are displayed per decadal period for RCP
pathways and for the total period for historical and observational data. In total 29 ensemble members are
used from 6 CMIP5m model outputs
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tioned previously, the largest temporal variation between the models is seen in the RCP
8.5 pathway. Not only is there a large variation in overall change in FFDI but also a large
di�erence between 2050 and 2100 values. It should also be noted that there are some
months with negative anomalies for GISS-E2-H in the RCP 8.5 pathway, particularly in
the summer and autumn months.
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Figure 7.11: Percentage change in monthly FFDI (compared to 1979-2005 baseline; anomaly) at 2050
(mean 2040-2049) and 2100 (mean 2090-2099) for both RCP 4.5 and RCP 8.5 CMIP5m pathways. FFDI
is averaged for Australia (left), south-eastern Australia (middle), and northern Australia (right) based on
de�ned bounds. Data are separated into ensemble means of each model.
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Trend in extreme FFDI days between 1979 & 2100

Despite the previous section primarily using monthly FFDI being to determine trends in
seasonally and yearly cumulative FFDI, daily CMIP5d projections were used to investi-
gate the trend in extreme FFDI days (similarly to 7.3.1). Again, extreme FFDI days were
de�ned as days with an FFDI exceeding a value of either 25 & 50. Figure 7.12 shows the
trend in the number of days exceeding an FFDI of either 25 or 50 between 1979 and 2100
(seasonally and overall). The combined time range includes only the historical and RCP
8.5 pathways due to the limited availability of data as discussed previously. However, for
this analysis, the highest emission pathway providing the most extreme FFDI conditions
are of particular interest as this will likely re�ect the largest di�erence in extremes. As
with Figure 7.4, this is done both spatially across Australia (Figure 7.12.b, c, e, f) and
also on average (Figure 7.12.a, d). As with all previous analysis, anomalies are given as
a di�erence from the 1979-2005 mean.

Similarly to Figure 7.4, there is a clear di�erence in the magnitude between the two ex-
tremes as noted previously. This is ± three for days with an FFDI>50 and ± 20 for days
with an FFDI>25 over the 1979-2100 period. Beyond this, like the previous section, it is
important to note that the magnitude of trends is substantially lower than AWAP derived
FFDI for the same period (1979-2015). This is primarily due to the reduced resolution of
the CMIP5d product causing the aggregation of local extremes. Despite this, the CMIP5d
product again re�ects features seen in Figure 7.4. Most noticeably, there is a similar neg-
ative anomaly in 2000 and 2011 for both plots. However, unlike the AWAP product, there
is also a very large negative anomaly in 2006. This may be due to the underestimation
of FFDI, particularly in DJF which drives the FFDI anomaly in the AWAP data for this
year. Overall, there is a clear upward trend in the extreme FFDI days anomaly post-2020
for both FFDI>25 and FFDI>50. As with the RCP 8.5 projections from monthly FFDI, this
again increases exponentially as the end of the century nears with anomalies in excess
of two days per year and 15 days per year for FFDI>50 and FFDI>25, respectively. This
increase in trend is far less pronounced in FFDI > 25 which experiences a more gradual
linear increase from 2006. Spatially, there are similar patterns for both plots, albeit with
a lower magnitude than AWAP derived extreme FFDI days. Likewise, the largest trend
is in excess of two days per decade (≈ one day for FFDI>50) and is experienced in cen-
tral Australia (particularly South Australia) with small localised negative trends along
coastal south-east Australia and north-western Australia.

Even more pronounced than with the AWAP data is the di�erence in the trend and
anomalies seen between seasons. For both FFDI > 25 and FFDI >50, DJF and SON tend
to drive trends due to their larger contribution to the yearly anomaly. In both DJF and
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Figure 7.12: (a) Number of CMIP5d derived extreme FFDI days [FFDI > 50] between 1979-2100 (anomaly
from 1979-2005 mean) averaged for Australia. Anomaly per year (black line), anomaly per season (dark
green: DJF; light green: MAM; dark blue: JJA; light blue: SON). The mean FFDIx from the CMIP5d ensem-
ble is derived from daily historical and RCP 8.5 data. (d) same as (a) for the number of days with FFDI >
25. Maps of the trend in FFDIx per year between 1979 - 2100 for FFDI > 50 (b) and FFDI > 25 (e), and per
season for FFDI > 50 (c) and FFDI > 25 (f).
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SON, this is relatively uniform spatially, with large positive trends experienced in central
Australia and only a very small negative trend seen in far north coastal Australia. As
with Figure 7.4, the strongest negative trends are seen in MAM. However, on average,
Australia experiences an increase of about 1-1.5 days with the FFDI exceeding 25 per
decade (0.5-1 days per decade with FFDI>50). To put this into context, from these pro-
jections, it is expected that by 2100 there to be on average up to 10 to 15 more days with
an FFDI exceeding at least the very high danger category. Considering the vast majority
of extreme FFDI days occur in a �ve month period, this is quite substantial.

7.4 Discussion

The temporal FFDI trends derived in this chapter from both observationally based AWAP
data and CMIP5 ensemble data show di�erent patterns in the historical and modelled
analysis. Historically based trends were assessed between 1979 and 2015 whilst CMIP5
RCP 4.5 (monthly only) and RCP 8.5 pathways were used to project FFDI between 2006
and 2100. Numerous studies have previously compared trends in �re danger globally
and regionally (Liu et al., 2010; Flannigan et al., 2013; Stocks et al., 1998; Brown et al.,
2004; Wotton et al., 2010) as well as for regions within Australia (Hennessy et al., 2005;
Pitman et al., 2007; Clarke et al., 2012; Fox-Hughes et al., 2014).

One caveat of comparing the historical trends of FFDI (and associated variables) derived
from AWAP and ERA-I to CMIP5 is that CMIP5 simulations are forced by time-varying
greenhouse gas concentrations and aerosols, whereas, AWAP and ERA-I modelled obser-
vations are driven by annually-varying atmospheric circulation and sea surface temper-
atures. Despite trend and temporal similarities between the products this explains the
near-zero Pearson correlations noticed spatially in Figure 7.5 and Figure 7.6. Beyond this,
this could contribute to di�erences in the magnitude of trends in FFDI between products.

Similarly to Clarke et al. (2012), the anomaly in cumulative FFDI between 1979 to 2015
(Clarke et al. (2012) used 1973 to 2010), however, using gridded AWAP data rather than
single station data was investigated. It was found that generally there was a strong pos-
itive trend in FFDI over time, however, there were regions with small negative trends,
particularly along coastal regions. This is contrasting to Clarke et al. (2012), which in-
dicates only positive trends from its 38 station sites with strong positive anomalies gen-
erally located at sites in arid and semi-arid regions. Part of the observed di�erence in
coastal regions can be attributed to the very large negative anomalies in FFDI in both
2011 and 2012, which, are not included in Clarke et al. (2012) analysis. Clarke et al.
(2012) indicate that overall 16 if the 38 sites observe signi�cant positive trends, of sites
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with non-signi�cant trends, 13 out of 20 are located in coastal regions and observe only
small positive trends.

When comparing decadal and seasonal trends it is apparent that there is substantial spa-
tial variability across Australia and even within similar climate regimes. Similarly to
Clarke et al. (2012), when comparing seasonal trends, DJF observes the most widespread
negative anomalies, particularly in southern Australia with northern Australia observ-
ing strong positive trends. The greatest positive trends are observed in the SON season,
particularly in south-eastern Australia. Despite the generally positive trends, an increase
in FFDI does not necessarily translate to an increase in �re occurrence nor �re intensity.
For example, in several years (2000 and 2011), there is actually a large increase in both
the number of �res and in FRP despite negative anomalies in FFDI during these years
(Figure 7.1), as suggested, these are largely dependent on the local �re dynamics as well
as the climate regime and fuel conditions at the time. As (Forkel et al., 2017) suggests �re
activity is dependent on the combined in�uence of climate and vegetation variability. In
particular, (Forkel et al., 2017) concludes that, in south-eastern Australia, �re is largely
controlled by vegetation whereas in arid Australia �re is controlled by a combination
of climate and vegetation conditions. The contrasting trends, or state, in both climatic
conditions and vegetation conditions, may contribute to the larger �re activity experi-
enced during years with negative FFDI anomalies. Conversely, the Black Saturday �res,
among other notable �res, appear to be as a direct result of the positive anomaly and
trend both prior to and during these years (Tolhurst, 2009; Clarke et al., 2012). However,
this observation may, in fact, be the culmination of extreme negative anomalies in veg-
etation moisture for the years prior to these events. Furthermore, regions of Australia
which experienced negative trends in �re activity and FFDI may be as a result of the
expansion and intensi�cation of agricultural land use and its e�ect on vegetation (An-
dela et al., 2017). Beyond this, changes in both FFDI trends and �re activity may also be
strongly in�uenced by inter-annual variability, namely, ENSO (Williams et al., 1999; Xu
et al., 2014) as well as soil moisture conditions (Liu et al., 2003).

These observed positive trends and changes in monthly and yearly cumulative FFDI were
also seen in projections from an ensemble of CMIP5 models both for RCP 4.5 and RCP
8.5 pathways. CMIP5 models replicated the spatial patterns of AWAP observational data
between 1979 to 2005, particularly with daily CMIP5, however, with some notable excep-
tions. These included the negative trends in the coastal regions of eastern and to a lesser
extent southern Australia as well as in Tasmania. There was also a large discrepancy
between the magnitude of trends seen between AWAP and the CMIP5 products. How-
ever, daily CMIP5 data tended to show a better agreement. This is partly because the
aggregation of data due lower resolution data, reducing the overall variance, and partly
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due to the reduction in variance when comparing di�ering temporal resolutions. There
were substantial similarities between AWAP and CMIP5 derived FFDI, when separating
into seasonally de�ned regions. For example, for RCP 4.5 and RCP 8.5 projections, in
general, there was an increase in FFDI of between 0.2 to 0.5 % per year, with all of Aus-
tralia experiencing positive trends. This was particularly noticeable when considering
the change in the number of extreme FFDI days, where both DJF and SON seasons ex-
perienced similar trends for both AWAP and CMIP5 derived FFDI. However, there were
some regions with little or minor negative trends such as alpine south-eastern Australia.
Typically, the positive trends are principally driven by warming and reductions in rel-
ative humidity through the drought component of the FFDI. This is in agreement with
Pitman et al. (2007), who investigated the change in FFDI and GDFI using gridded data
produced by RCPs for 2050 and 2100. Similarly, projected FFDI has been studied at sta-
tion sites by Hennessy et al. (2005), regionally by Clarke et al. (2011) and in Tasmania
by Fox-Hughes et al. (2014). Hennessy et al. (2005) investigated the change in FFDI and
GFDI using two RCMs as input for climate change scenarios for 2020 and 2050 across
17 sites, whereas, Clarke et al. (2011) investigated the seasonal change in 2050 and 2100
FFDI projections in four speci�c east-coast regions of Australia.

Generally, the results presented here are in agreement with Hennessy et al. (2005), Pit-
man et al. (2007), Clarke et al. (2011), and Fox-Hughes et al. (2014) that there is an increase
in FFDI in both 2050 and 2100. However, here, we indicate a higher magnitude of trends,
continuously increasing in the RCP 8.5 pathway while �attening o� towards the end of
the 21st century for the RCP 4.5. Conversely to Clarke et al. (2011), the onset of the pos-
itive trend in FFDI is already present early on, increasing throughout the 21st century
(RCP 8.5). Overall, changes in the FFDI and trends appear to be seasonally dependent
for both the model and the regions selected, with the largest di�erences occurring in the
CSIRO and HadGEM2 models between SON and JJA for monthly data, whilst the largest
trends occurred during DJF and SON for daily data. Similarly, these results do not nec-
essarily coincide with previous studies, particularly with Clarke et al. (2011), using only
point data, which may result in representativeness issues. This is due to the di�erence
in the number of grid cells used to average FFDI across regions as well as the regions
selected by Clarke et al. (2011), which all fall in similar climate regimes along coastal
south-eastern Australia.
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Discussion - CHAPTER SUMMARY

Chapter Summary

Chapter 7 assesses the change in FFDI derived from past and future projections of se-
lected CMIP5 models (scaling API to the drought factor component), for Australia be-
tween 1979 and 2100. Changes in FFDI are projected to increase substantially throughout
the twenty-�rst century, particularly if the radiative forcing of the RCP 8.5 pathway is
realised. However, these changes are expected to vary greatly across Australia and sea-
sonally, in line with observations from current trends in FFDI. These positive trends do
not necessarily correspond to an increase in �re occurrence nor higher FRP �res as sim-
ilarly stated in the previous chapter.

162



CHAPTER8
Conclusions and Future Work

Overview This thesis investigates the relationship between various soil moisture
indices and temperature extremes, and their e�ect on �re intensity (FRP) and �re danger
(FFDI) across Australia. This has been achieved through four analysis chapters (Chap-
ters 4-7), with the �rst two focusing on a comparison between soil moisture indices as
well as their relation to the number of hot-days (Tx90), and the second two investigating
the relationship in context with FRP and FFDI as well as past and projected changes in
FFDI. Each of these chapters uses gridded data to compare spatial variability across a
range of climate regimes in Australia but Chapter 4 also includes in situ station sites.
Appendix A also includes a case study investigating the minimum sampling frequency
used to determine �re severity from remotely sensed and ground-truthing data. There-
fore, this chapter summarises the speci�c research outcomes of this Ph.D. thesis and its
conclusions, as well as potential opportunities for future work.
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Summary of Research Conclusions

8.1 Summary of Research Conclusions

8.1.1 Conclusions from Chapter 4: Comparison of Soil Moisture
Proxies Across Australia

Chapter 4 presented a comparison of a variety of soil and climate characteristics to better
understand how the performance of soil moisture indices compares to a reference soil
moisture and how these vary across Australia. More particularly, four moisture indices
and 64 in situ soil moisture sites were compared from the OzNet, OzFlux and CosmOz
networks in Australia. They were then compared against ESA CCI remotely sensed soil
moisture observations across Australia. This expanded on previous studies which used
a limited number of in situ sites representing only few climate regimes across Australia,
as well as adding a gridded analysis to provide an overview of spatial trends. Beyond
this, the temporal range was expanded and included moisture indices pertinent to �re
danger. The Pearson correlation coe�cient, bias, and RMSE were the primary statistics
used for measuring the degree of association between products and were primarily com-
pared against for the 2000 (1979 for gridded data) to 2015 period.

Similar to other studies, there is a strong agreement between various soil moisture prod-
ucts and the reference soil moisture across both in situ sites and observations for large
parts of Australia. It was found that API and MSDI show the highest correlation to in situ
surface soil moisture (normalised and normalised anomaly) with the highest correlations
observed in the OzNet network. Also, API and MSDI tend to resemble the gridded refer-
ence soil moisture the closest with little bias towards either wetter or drier conditions.
Both KBDI and 14-day SPI observe a large wet bias across all sites and AWAP surface
soil moisture shows a large dry bias compared to in situ sites. However, these results are
not re�ected in deeper soil moisture layers with KBDI and MSDI best-representing soil
moisture at 30, 60, and 90 cm compared to API, SPI and AWAP s0. Average correlation
coe�cients between in situ sites and both KBDI and MSDI are generally consistent with
varying depths indicating that these might be better suited for root zone studies. These
results are consistent with the comparison of gridded products, but, spatial variations
appear to be largely due to the soil and climate characteristics. Correlation coe�cients
are particularly strong in the south-east and north of the country coinciding with re-
gions within the transitional regime (savanna, temperate and semi-arid regimes) as well
as in soils with strong �ltration properties (low porosity) and regions with a lower vege-
tation density (VOD). This indicates that the performance of moisture indices is heavily
in�uenced by spatial variability due to soil and climate characteristics. These di�erences
should be observed and considered when choosing an appropriate index for any partic-
ular application. Chapter 4 highlights the strength of API as a proxy for soil moisture as
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it represents a parsimonious model that accomplishes the desired level of accuracy re-
lying on only precipitation and temperature data using a relatively simple drying model.

From Chapter 4 we can conclude that:

1. API and MSDI show the largest correlation to in situ surface soil moisture (nor-
malised daily, normalised daily anomaly and monthly data) with the highest cor-
relations seen in the OzNet network.

2. Both KBDI and SPI14 show a large wet bias across all sites and AWAP surface soil
moisture observes a large dry bias compared to in situ sites.

3. KBDI and MSDI correlate best to in situ soil moisture at 30, 60, and 90 cm depths
compared to API, SPI and AWAP s0.

4. Regions within the transitional zone experience the largest correlation between
the soil moisture indices and ESA CCI soil moisture apart from the south-east
coast.

5. Soil type, porosity, VOD and climate regime signi�cantly in�uence correlations
between each product and the reference soil moisture.

8.1.2 Conclusions from Chapter 5: Variability of Soil Moisture Prox-
ies and Hot Days

The transitional zone paradigm as introduced by Seneviratne et al. (2010), explains the
in�uence of soil moisture on the overlying energy partitioning between sensible and la-
tent heat in context with evapotranspiration drivers (Teuling et al., 2009) and vegetation
conditioning (Seneviratne et al., 2010). This has long been implied through the interpre-
tation of the commonly used Köppen-Gieger climate regimes Köppen (1884), Kottek et
al. (2006), and Peel et al. (2007), but an explicit inter-comparison has only been identi�ed
at either the global (Greve et al., 2014; Greve et al., 2016) or catchment (Carmona et al.,
2016) scales. Due to the size of Australia and its catchments, they are spanning several
climate regimes meaning that it is not accurate to generalise conditions for all regions.
Chapter 5 clearly identi�es a di�erence between both the established climate regimes
and also recent Budyko studies (Greve et al., 2014; Greve et al., 2016) for Australia using
the AWAP dataset at 25 km spatial resolution.

As mentioned, Chapter 5 introduces the key mechanisms behind the relationships driv-
ing an increase in �re occurrence and intensity, but also the strength of the correlation
between various moisture indices and their e�ect of soil moisture on temperate extremes.
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Contrary to recent studies (Seneviratne et al., 2010; Fischer et al., 2007) which indicate
that the transitional zone lies within semi-arid regions within central and southern Eu-
rope, whereas we indicate in Figure 5.1, that for Australia, the transitional zone is ac-
tually a combination of the savanna, semi-arid and temperate Köppen-Gieger climate
regimes. More speci�cally in 34 out of 46 years, the semi-arid regime exceeds the dry-
ness index threshold for the transitional zone and rather is moisture limited. This is in
agreement with Figure 5.2 (top), which indicates that in the majority of the semi-arid
region evapotranspiration is completely dependent on the available precipitation as is
the case for the arid regime. This indicates that in general, these regimes are dryer than
similarly classi�ed regimes presented in previous studies. Similarly, these results di�er
from Greve et al. (2014) and Greve et al. (2016) which used a variation of the de�nition
of the transitional zone using a smaller aridity range 2 < PET/P > 2, compared to
1 < PET/P > 3. However, this does not account for the changes seen in Figure 5.1 as
the transitional zone would be further narrowed to exclude the semi-arid region com-
pletely. Likewise, this would not account for the observed aridity values seen for the
savanna regime. Finally, greater detail of regions within the transitional zone is noted
here including regions in the east of Tasmania, southern West Australia and around
alpine Australia.

Chapter 5 also clearly identi�es the strength and mechanisms of the relationship be-
tween monthly SM and temperature anomalies in Australia. Generally, it is found that
there is a signi�cant negative relationship between various SM indices and Tx90 for large
parts of Australia. More particularly, arid and semi-arid regions of Australia exhibit the
strongest increase in the quantile regression slopes (from low to high percentiles), in-
dicating that months with low SM are highly likely to experience a large number of
Tx90 (Figure 5.4). However, northern (savanna) and southeastern Australia (temper-
ate) observe the largest correlation coe�cients between changes in moisture and Tx90.
Again, API appears to best represent patterns seen with the AWAP s0 and has the largest
negative-correlations with Tx90 in the transitional zone (Figure 5.3).

Finally, the e�ect of inter-annual variability in the form of ENSO was introduced in
Chapter 5 and there appears to be a high level of spatial variability in the magnitude of
correlation coe�cients between SM and Tx90 associated with ENSO events across Aus-
tralia (similar to those seen by Perkins et al., 2015). Compared to non-DJF months, it
was determined that overall, an increase in the correlation coe�cients between SPI and
Tx90 across Australia exists, but this cannot be solely attributed to the e�ect of ENSO
on precipitation as there is a very large spatial variability in the Tx90-SM relationship.

To summarise, Chapter 5 con�rms that:
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1. In 34 out of 46 years, the semi-arid region is moisture limited, indicating that the
semi-arid regime is largely not within the transitional zone. This is further high-
lighted in Figure 5.2 (top/bottom), where, large areas of the temperate, savanna,
and to a lesser extent semi-arid (compared with as expected) climate regions in
Australia enter the transitional regime and are neither strongly moisture nor ra-
diation limited.

2. Arid and semi-arid regions of Australia exhibit the strongest increase in the quan-
tile regression slopes (from low to high percentiles), indicating that months with
low SM is highly likely to experience a large number of Tx90 (Figure 5.4).

3. Northern (savanna) and southeastern Australia (Temperate) observes the largest
correlation coe�cients between changes in moisture and Tx90. Conversely, re-
gions with near-zero precipitation tend to have little to no correlation. (Figure
5.4).

4. API appears to best represent patterns seen with the AWAP s0 and has the largest
negative-correlations with Tx90 in the transitional zone (Figure 5.3).

8.1.3 Conclusions from Chapter 6: Improving Fire Risk Estimation
by Investigating Fire Intensity, and Moisture and Tempera-
ture Extremes

Following from the previous section, �re intensity in the form of FRP was investigated
in the context of the land-climate interactions, particularly the relationship between soil
moisture and temperate extremes. This was then compared to the FFDI produced for
each moisture index and well as being compared against the key variables leading to �re
conditions. As with previous studies, it was found that the seasonality of maximum FFDI
was highly variable across Australia with the �re season shifting from the north in the
in June/July progressively further south through SON, to the south-east in DJF and the
south-west later in this season. Similarly, the �re seasons were determined with respect
to the climate regimes in Australia with maximum FFDI occurring for the temperate
and semi-arid regimes in DJF and all other regimes peaking in October. This analysis
was also performed for MODIS-derived FRP and �re occurrence, producing starkly con-
trasting results to that of maximum FFDI. Our results indicate that the month in which
the maximum FRP occurs does not necessarily coincide with the maximum number of
�re occurrences. This is particularly noticeable in the savanna and tropical regimes
where the maximum number of �res occurs prior to the maximum FRP. Furthermore,
the largest FRP �res appear to occur in the temperate/transitional regime, particularly
in alpine south-east Australia and are typically characterised as having very few �res
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per year compared to the north of the country.

Following this, it was found that there is a clear relationship between both an increasing
number of �res and an increase in FRP with decreasing moisture. This was consistent for
each moisture index, however, the change in moisture between the lead-up and post-�re
events such as the Black Saturday �res were far more prominent for API, SPI, and s0.
This was translated in the pattern seen in the drought factor which was consistently at
near maximum levels throughout these periods. Due to this the resultant FFDI and its
change during this event appears to be more closely associated with changes in wind
speed, temperature, and relative humidity than the moisture component. Considering
the strong logarithmic relation between a decrease in soil moisture and FRP, this sug-
gests that KBDI and MSDI may not be the most appropriate indicators for representing
the increase in �re intensity through the FFDI. This is con�rmed in the comparison of the
change in each moisture index and the resulting change in both FRP and FFDI. More so,
when directly replacing the KBDI with each moisture index, there was little di�erence
in the resultant FFDI, particularly with API. This was also the case when scaling each
of the indices to the drought factor, further suggesting that the current formulation of
FFDI is unnecessarily complex and replacing the drought factor with API would su�ce.
Along with this, it was found that the changes in FFDI do not re�ect the changes in the
maximum observed FRP.

Key �ndings from Chapter 6 include:

1. Both the number of �res and FRP increase with decreasing soil moisture for each
index.

2. As observed with previous results, both MSDI and API best correspond to observed
changes in the relationship between observationally based soil moisture and FRP.
i.e. there is a clear logarithmic increase in FRP with decreasing moisture.

3. KBDI again does not represent the observed changes well, with only a small linear
increase in FRP with decreasing moisture.

4. A high concentration of �re occurrences does not necessarily correlate to a larger
FRP. The highest maximum observed FRP is located in alpine Victoria and N.S.W.
These results again correspond with the transitional zone, indicating that signif-
icant di�erences in soil moisture from the mean in these regions will provide an
increase in �re conditions and intensity.

5. Changes in FRP are not re�ected in the respective change in the FFDI or the current
categories.
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6. There is a very strong agreement between ERA-I/AWAP (combined product) KBDI
driven FFDI and API driven FFDI derived from ERA-I data alone. Furthermore,
there is a negligible di�erence between API and KBDI driven FFDI products.

7. There is minimal di�erence in FFDI when substituting di�erent indices into the
current drought factor component of the FFDI. The DF is principally driven by
the decay component and therefore, API provides a suitable replacement for the
drought component completely (Figure 6.10).

8.1.4 Conclusions from Chapter 7: FFDI in a Changing Climate

Chapter 7 assesses the change in FFDI derived from past and future projections of se-
lected CMIP5 models (scaling API to the drought factor component), for Australia be-
tween 1979 and 2100. Overall, FFDI is projected to increase substantially throughout
the twenty-�rst century, particularly for the RCP 8.5 pathway. However, these changes
are expected to vary greatly across Australia and seasonally, in line with observations
from current trends in FFDI. More speci�cally, the eastern and southern coastal regions
of Australia, are expected to have a far smaller increase in FFDI, particularly in sum-
mer compared to arid and semi-arid regions. This is also the case in northern Australia
in the winter (JJA) months. Comparing the variables used to drive FFDI, changes are
shown to be primarily related to an increase in maximum temperature and reduction
in relative humidity through the drought factor. These results are in agreement with
previous studies, combining to produce an overall view of the temporal and spatial vari-
ation across Australia throughout the current century. This chapter provides a further
analysis of trends in FFDI for Australia both historically and projected using two di�er-
ent forcing pathways from an expanded 29 ensemble members from six CMIP5 models
(six ensembles from six models for daily CMIP5 data). Changes in FFDI and the number
of extreme FFDI days were spatially compared at a monthly, seasonal and at the yearly
temporal scale providing an overview of the potential change in �re risk under moderate
and high-end climate change conditions.

More speci�cally, from this chapter, we can conclude that:

1. With the exception of coastal eastern and southern Australia, the majority of Aus-
tralia has experienced an increase in FFDI between 1979 and 2015. The largest
positive changes in FFDI have occurred during the last 15 years with changes be-
ing observed almost uniformly across Australia.

2. Positive trends in FFDI do not necessarily correspond to an increase in �re occur-
rence nor higher FRP �res, with 2000 and 2011 being noticeable examples. How-
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ever, in 2002, 2006 and in 2009 the �re activity is heavily in�uenced by strong
positive changes in FFDI (particularly the "Black Saturday" �res.)

3. Changes in FFDI are principally driven by warming and reductions in relative hu-
midity through the drought factor.

4. By the end of the century, the change in FFDI is likely to increase by about 20%
and 30% for climate pathways, RCP 4.5 and RCP 8.5, respectively.

5. The change in FFDI over the 21st century is not uniform, spatially nor seasonally,
with the largest changes being observed in central Australia during SON and DJF.
This is similarly noticed with the change in the number of extreme FFDI days.

6. It is expected that there will be on average up to 10 to 15 more days with an FFDI
exceeding at least the very high danger category (FFDI > 25) by 2100.

8.2 Outlook and Future Work

There are several opportunities for future research arising from this thesis. Chapter 4,
introduced the comparison of various soil moisture indices, primarily at the surface soil
layer but also at several deeper layers, which may be better associated with actual soil
moisture in studies investigating longer-term droughts. This was done using in situ ob-
servations. However, with improvements to the accuracy of land surface models (LSM’s)
such as the Joint UK Land Environment Simulator (JULES; currently being implemented
in Australia), further work could include a gridded analysis of the spatial variation be-
tween JULES and moisture indices. This work could eventually be conducted at a higher
spatial resolution than presented in this study, for example, at 1 km to improve the spa-
tial representation and temporal stability (Minet et al., 2013; Zhou et al., 2007). However,
despite improvements in the accuracy of LSM’s, Yang et al. (2014) concluded that they
need to include lateral soil moisture/water �ow, and to use more accurate prescriptions
of the hydraulic and thermal properties of the soil to achieve a better simulation of soil
moisture.

As mentioned, Chapter 5 identi�es the strength and mechanisms of the relationship be-
tween monthly SM and temperature anomalies in Australia, providing an extended in-
sight beyond previous studies. This involved introducing inter-annual variability in the
form of ENSO through the SOI. However, various other modes of variability have been
proven to have a strong e�ect on precipitation in the region (Cai et al., 2009; Williams
et al., 2009; Risbey et al., 2009), speci�cally, the Indian Ocean Dipole (IOD), the Southern-
Annular Mode (SAM) and the Madden-Julian Oscillation (MJO) which account for the
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three largest explained di�erences in the variance of precipitation across Australia (Mon-
tazerolghaem et al., 2016). The IOD, SAM, and MJO could be investigated in the context
of large-scale dynamics along with the spatial distribution of precipitation and evapo-
transpiration across Australia. Similarly to Chapter 5, this could then be put into context
with the observed spatial variation due to the energy partitioning as well as climate vari-
ability itself.

Another consideration in Chapter 5, is to note that as the depletion rate in the calcula-
tion of API, KBDI and MSDI considers the contribution of maximum daily temperature,
the resultant relationship between these indices and Tx90 could include a bias due to
the dependency on temperature. Similarly, as analyses are based on monthly data, data
may not accurately re�ect monthly trends where in�uenced by extreme daily moisture
anomalies. For example, despite a sustained dry period during a month, the overall
anomaly may be positive due to an extreme precipitation event. Thus any hot-days as-
sociated with the dry events could be masked. Rather than investigating the e�ect of
soil moisture on Tx90 or heat wave days, further research could bene�t from investigat-
ing the di�erence in day-to-day temperature or daily anomalies in order to isolate the
change in temperature due to changes in soil moisture.

Following Chapter 6, FFDI has been calculated for each moisture index and compared
against both the key variables leading to �re conditions and also FRP. It was found that
the current formulation of FFDI is unnecessarily complex and replacing the drought fac-
tor with API would su�ce. Along with this, it was found that the changes in FFDI do
not necessarily re�ect the changes in the maximum observed FRP. Further investigation
into the change in FFDI reveals that there is a positive trend in the last two decades,
however, this trend is spatially dependent which is not represented in the current cate-
gories of FFDI.

In addition, some indices (FFDI and GFDI) have been found to perform poorly when as-
sessing the risk of high severity �res (Harris et al., 2011). The current FFDI and various
other indices can be used to determine the risk of the outbreak of forest �res, but such
indices cannot describe the risk of forest �res in terms of severity and intensity. There-
fore, current indices cannot provide the overall danger and risk of a �re for mitigation
by local �re authorities, particularly for the conditions found in Australia. This has been
addressed conceptually by Harris et al. (2011), in which a �re severity scale was pro-
posed based on the size and rate of propagation of the �re. The idea is that as there is
an increase in the rate of propagation or perimeter spread of the �re, a larger amount
of fuel is consumed, releasing energy into the atmosphere. This rate of energy released
from the �re determines the severity of the �re.
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Through the literature review for Chapter 6, there are many methods to determine the
amount of energy released by �res due to the combustion of fuels with a common
method; �re-line intensity being a measure of the energy released along the front of
the �re itself (Byram, 1959). However, due to improvements in the retrieval of remotely
sensed products, FRP provides an accurate estimation of the amount of energy released
and is explored in this thesis. Little research has been conducted on the use of FRP, not
only to determine minimum �re detection thresholds but also to be included in a �re
danger index to produce a scaling of �re intensity and severity. This potential use of
forecasting �re intensity in �re risk indices is similar in approach to many other natural
hazard scales and risks’ such as the case for hurricanes and cyclones (Sa�r scale), earth-
quakes (Richter scale) and avalanches (e.g. European danger scale) but such approaches
have been seldom studied in relation to forest �re. As such, further research could con-
sider implementing the FRP into a modi�ed FFDI, providing the scale as well as the risk
of ignition (as current). Furthermore, the drought factor in this modi�ed FFDI could be
further simpli�ed using either the API or a similar simple moisture index modulated by
a moisture decay function.

As with previous chapters, ideally FFDI, FRP and moisture conditions should be com-
pared at the daily scale. However, due to the availability and large uncertainty in the
simulated projections of the variables used to calculated FFDI, primarily monthly means,
and yearly totals are used to assess trends here (Chapter 7). This chapter could bene�t
from a more comprehensive comparison of the uncertainty between daily and monthly
produced FFDI and to what degree this would e�ect the spatial variability seen across
Australia. More speci�cally, the di�erence between daily and monthly RCP pathways
and their a�ect on both extreme FFDI days, as well as, the overall trends could be fur-
ther investigated. Ideally, the RCP 4.5 (and possibly RCP 6.5) would be added to the daily
analysis, as well as, an expansion of the simulations used for ensemble means. Similarly,
a comparison between FFDI derived using various moisture driven indices would add
further information on the e�ect of soil moisture of projected FFDI trends.

Finally, as precipitation, temperature, surface wind, and relative humidity, as well as
evapotranspiration and potential evapotranspiration (implemented in the hydrological
models), originate from the same model, they are assumed to be physically consistent.
For the purposes of this work, it was assumed that inter-model comparisons are valid
and do not contain intrinsic di�erences. However, it is likely that the performance relat-
ing to the hydroclimatological processes di�ers between model members of the CMIP5
climate project. Due to this, the Budyko framework introduced in Chapter 5 could be
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used to assist in selecting speci�c climate models that represent hydroclimatological pro-
cesses better than others. This will not only result in more accurate projections of FFDI,
but also allow for more accurate ensemble averages, and allow for better comparisons
between the models themselves. Furthermore, the models used for projected changes
in dryness/wetness (moisture indices) could be validated against the observations in the
historical period similar to what has been done in Chapter 7.
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APPENDIXA
Determining the Minimum Sampling

Frequency for Ground Measurements of
Burn Severity

This appendix has been included as additional work conducted in review of the methods
for “burn severity” mapping, however, as it is not directly related to the aims or con-
tents, it has not been included in the main body of work. This is a published work as
declared in the preamble of the thesis as: Holmes, A., C. Rüdiger, S. Harris, and N. Tapper
(2018). "Determining the Minimum Sampling Frequency for Ground Measurements of
Burn Severity.” International Journal of Wildland Fires (in press).

Overview Understanding burn severity is essential to provide an overview of the
precursory conditions leading to �res as well as understanding the constraints placed
on �re management services when mitigating their e�ects. Determining the minimum
sampling frequency for ground measurements of achieved burn e�ciency is not only
essential for accurately assessing burn severity, but also for �re managers to better al-
locate resources and reduce the time and costs associated with sampling. In this study,
�eld sampling methods for assessing burn severity are analysed statistically for ten burn
sites across Victoria, Australia with varying burn extents, topography, and vegetation.
Random and transect sampling methods are compared against each other using a Monte-
Carlo simulation to determine the minimum sample size needed for a di�erence of 0.02
(2%) in the severity classes proportions, relative to the population proportions. We show
that on average transect sampling requires a sampling rate of 3.16% compared to 0.59%
for random sampling. We also �nd that sites smaller than 400 hectares require a sam-
pling rate of between 1.4 and 2.8 times that of sites greater than 400 hectares to achieve
the same error. The information obtained from this study will assist �re managers to
better allocate resources for assessing burn severity.
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APPENDIX A. SAMPLING RATE FOR GROUND MEASUREMENTS Of BURN SEVERITY

A.1 Introduction

Forest �res occur regularly on a large scale across semi-arid regions such as south-
eastern Australia. These �res cause signi�cant strain on forest management services
attempting to mitigate their impact on both community and the economy. Forest and
�re management services throughout the world have long used vegetation management,
in the form of controlled burning, to minimise fuel load and to mitigate potential �re
danger in a region at risk. Forest �res, either through long or short term ecological im-
pact, alter the vegetation and soil attributes from burning of surface litter to changing
the species composition throughout a forest (Cocke et al., 2005; Keeley, 2009), and if
applied as a preventive measure, reduce future large-scale �re risks. "Fire severity" or
“burn severity” (current literature uses “burn severity” and is used hereafter) describes
the immediate e�ects of a �re on organic matter such as vegetation, soil, and litter (Key
et al., 2006; Keeley, 2009). In other words, burn severity is a function of the ecological
change due to �re (Cocke et al., 2005) Due to this, improving the techniques and methods
used by management services to quantify and map burn severity is essential to improve
�re danger mitigation and manage the vegetation-fuel load. In particular, for controlled
burns, it is essential to have knowledge on the e�ectiveness of the �re, i.e. how well it
has reduced the fuel load, for which burn severity is taken as the quanti�able indica-
tor. However, manual sampling is subjective and cannot be used for assessments across
large areas, hence remote sensing techniques have been developed to estimate the �re
severity from such data.

As mentioned, �re alters the vegetation, soil, and litter composition as well as expos-
ing and altering the colour and brightness of the surface soil. This causes changes in
the spectral response and as such can be detected through the visible near-infrared and
mid-infrared wavelengths via remote sensing satellites (van Wagtendonk et al., 2004;
Chuvieco et al., 2006). Currently, burn severity is determined using a combination of
both remotely sensed and ground sampled data. As the accuracy of remotely sensed
data has improved during recent years, it has become a more commonly deployed ap-
proach to determine burn severity (Keeley, 2009). Various satellite sensors (e.g. MODIS,
ASTER, Landsat, RapidEye) have previously been compared against �eld measurements.
The Landsat Thematic Mapper has been identi�ed as the most accurate and commonly
used instrument to estimate burn severity (van Wagtendonk et al., 2004; Brewer et al.,
2005; Cocke et al., 2005; Chuvieco et al., 2006; Kokaly et al., 2007; French et al., 2008).
This is achieved using various techniques. One such index is known as the di�erenced
Normalized Burn Ratio (dNBR) (Brewer et al., 2005; Cocke et al., 2005; Miller et al., 2007)
that is often used in the USA.
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NBR =
(R4 −R7)

(R4 +R7)
× 1000

dNBR = NBRprefire −NBRpostfire

(A.1)

Equation A.1 describes the NBR and dNBR. WhereR4 andR7 is the re�ectance for bands
4 (0.76-0.9 µmwavelength) and 7 (2.08-2.35 µmwavelength) of the imagery, respectively.
R is determined using the solar irradiance, the per-pixel brightness value, the grain and
bias, the earth’s eccentricity and the solar zenith angle. The dNBR can simply be de-
scribed as the di�erence in the re�ectance between pre-�re and post-�re images. In the
USA, Burn Area Emergency Rehabilitation (BAER) assessors commonly use the dNBR
to determine burn severity due to the speed and accuracy at which BARC (Burned Area
Re�ectance Classi�cation) maps can be produced. Fire management services are yet to
use NBR in Australia; however, recent studies have also used dNBR for determining burn
severity, in particular, Boer et al. (2008) who used the leaf area index as a proxy for dNBR
to determine burn severity patterns in southwestern Australia. They concluded that re-
ductions in forest leaf area index were consistent with observed changes in �ame length,
scorch height and �re intensity (Boer et al., 2008). Many studies have indicated a strong
correlation between burn severity classes produced with BARC and those produced from
�eld assessments (Cocke et al., 2005; Miller et al., 2007). In order to ensure an acceptable
quality, burn severity assessments using BARC maps should be conducted as soon as
possible, post-burn, in order to correctly describe changes due to the �re. One limitation
is that satellite “overpasses” will not necessarily coincide with either clear skies or the
appropriate time (Keeley, 2009) and it is possible that several days to weeks may pass
before an image can be acquired. Therefore, it is necessary for BAER assessors to con-
tinue assessing burn severity from �eld surveys. Also, �eld sampling is still needed to
validate remotely sensed burn data. In order to limit resources expenditure, the sampling
techniques need to be optimised, which is the focus of this paper.

Field sampling requires BAER assessors to record burn severity based on the proportion
of burned area of organic matter from a sample area (Key et al., 2006). Globally, man-
agement services use various approaches to record burn severity. One such approach is
the composite burn index (CBI), which is often used in the USA and Canada. It quanti-
�es the proportion burned based on various organic metrics (vegetation, soil, litter, etc.).
Key et al. (2006), proposed sample plots in which the CBI was to be assessed. These
plots include all burn information within a 15m radius of a predetermined location that
is to be assessed, expanding to 30m when burn e�ects are complex or it is too di�cult
to walk through. Similarly, in southeastern Australia DELWP (the Department of En-
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vironment, Land, Water, and Planning) assess burn severity using plots, however, with
a 10 m radius (DEPI, 2013b). DELWP indicate that the severity must be uniform for a
minimum radius of 20m. This is required to reduce qualitative error and errors caused
by positional inaccuracies with GPS devices. It is usually recommended that a range of
vegetation and aspect (hill-slope and elevation), as well as burn patterns, are assessed to
capture the spatial variability within a burn (Key et al., 2006; DEPI, 2013b).

Key et al. (2006) determine that depending on site size and complexity, 50 to 100 plots
per burn are adequate in most cases. Nevertheless, if the total burn area is larger than
1000 hectares, the site exhibits large variability in burn severity such that the number of
plots may need to be larger. Conversely, smaller burns tend to have a low spatial vari-
ability and it may be su�cient to record as few as 20 to 40 plots. DELWP provides its
own guideline to determining the number of plots necessary and suggest that all sites
should include at least ten plots per severity class where possible (DEPI, 2013b), further
specifying that sampling be taken at a rate of between 0.5% and 4% (of the total area)
depending on the size of a site. Generally, for operational assessments, a sampling rate
of between 0.5% and 1% is used (DEPI, 2013b). In either case, �eld sampling is recom-
mended to be recorded in transects throughout burn sites.

Field sampling requires extensive time and resources to accurately depict the severity of
any given �re due to the size of burn sites and accessibility of plots, the amount of infor-
mation recorded and occupational health and safety procedures (Key et al., 2006; Keeley,
2009; DEPI, 2013a; DEPI, 2013b). As a result, there is a large variation in sampling tech-
niques between di�erent �re authorities in di�erent countries (e.g. the U.S Department
of Agriculture using the CBI, and in Victoria, Australia, DELWP and the Country Fire
Authority de�ning their own method), however, there are no speci�c studies to quan-
titatively determine the rate at which �eld sampling should be recorded to produce an
accurate representation of burn severity. This paper addresses this, and the results could
be applied globally regardless of the burn severity assessment tool used.

This sampling rate is determined here by statistically analysing the di�erences between
transect sampling and random sampling within a region. The objective of this study
is to determine the minimum sampling rate at any given burn site for the random and
transect sampling to reduce the time and resources for �re managers to collect �eld data.
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A.2 Study Sites and Datasets

A.2.1 Study Sites

This study presents a burn severity analysis of ten burn sites across Victoria, Australia.
The burn sites are located within national forests (see Figure A.1. The sites were cho-
sen due to the completeness of records and access to the data as it was supplied through
DELWP. These sites have been part of the �re assessment from prescribed burns between
2012 and 2013. Each site varies signi�cantly in size and topography, ranging between 223
ha (Gembrook) and 3,613 ha (Valencia Creek). A summary of the sites, their individual
name, location, size and burn class percentages are given in Table A.1. The vegetation
within each site also varies substantially with vegetation ranging from wet sclerophyll
forests with a high canopy and fern understory to dense, dry sclerophyll forests with a
much lower canopy height.

Figure A.1: Locations of burn sites and their relative size within Victoria. Inset map of Australia, indi-
cating the region where sites are located.
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A.2.2 Remotely Sensed Data

Burn severity classes can be derived through the use of high-resolution remotely sensed
data. Many BARC related studies (van Wagtendonk et al., 2004; Miller et al., 2007; Kee-
ley, 2009) use a variety of remotely sensed products to produce dNBR, namely, Landsat,
ASTER (Advanced Spaceborne Thermal Emission and Re�ection Radiometer), MODIS
(Moderate Resolution Imaging Spectroradiometer) and MASTER (MODIS-ASTER). How-
ever, in Victoria, DELWP uses the RapidEye product to produce burn severity through
the Burn Severity Assessment Tool (BSAT). Similar to the aforementioned products,
RapidEye provides the required multi-spectral images from the red, green, blue, red-
edge and NIR bands through its constellation’s �ve satellites. At 5-10 m, RapidEye has
a much higher spatial resolution than Landsat (15-30 m), MODIS (250m), and ASTER
(15-30 m). RapidEye also has a geolocation accuracy of 10 m, and a revisit time of 1-5.5
days (Arnett et al., 2015).

A.2.3 Severity Classi�cation

Remotely Sensed Products

The US Forest Service speci�cally developed the BARC to produce severity classes based
on remotely sensed optical imagery. As mentioned, satellite re�ectance values are used
to characterise burn severity through Equation A.1, to produce the dNBR. Where avail-
able (otherwise NBR is used) dNBR is scaled to the dynamic range of 8-bit data (0-255) to
produce the BARC-Adjustable (BARC-A) product from which BARC maps are derived.
Jenks Natural Breaks logic is used to classify the BARC-A product into four classes, 0-75
(unburnt), 76-109 (low), 110-187 (moderate) and 188-255 (high) (Key and Benson 2006).

Similarly, DELWP produces severity maps from remotely sensed data using the BSAT.
As with BARC, BSAT is a semi-automated GIS tool designed speci�cally for use with
RapidEye satellite imagery. Di�erently from the BARC product, the BSAT calculates the
Di�erenced Normalized Di�erence Vegetation Index (dNDVI) using RapidEye images.
dNDVI is calculated using:

NDV I =
(NIR−Red)

(NIR +Red)

dNDV I = NDV Iprefire −NDV Ipostfire
(A.2)
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where, Red and NIR are the spectral re�ectance measurements acquired from the visible-
red (0.63-0.685 µm) and near-infrared (0.76-0.85 µm) wavelengths, respectively. From
this, four classes of severity are produced using a Jenks Natural Breaks logic adjusted to
match visual observations (detailed in DEPI (2013a)).

Field Observations

Due to the varied composition of forests, burn severity may be di�cult to ascertain and
compared against in di�erent locations. Due to this, in Victoria, DELWP divides severity
into four classes to match those produced using the BARC and BSAT methodologies. In
plots where the canopy is more than 50% burnt, vegetation is black and disintegrates
easily, are de�ned as the most severe (Black). Plots in which the canopy is less than 50%
burnt but the combined scorch and burnt area exceeds 50%, are described as the second
most severe (Brown), and those that are less than 50% burnt and scorched, are the third
most severe class (Green). The �nal unburnt class (Blue) is de�ned as a plot where the
surface vegetation is 100% unburned. To re�ect variation in vegetation type and density
it is suggested that samples are taken across plots with a relatively uniform vegetation
across a radius of 10 m (DEPI, 2013a).

A.2.4 Sampling

As the aim of this paper is to estimate the minimum number of samples in a given area
to provide an accurate classi�cation of the overall burn site through sub-sampling, two
sampling techniques, random sampling, and transect sampling were tested as described
below (both of which are commonly employed by DELWP for sampling). This was done
by comparing the populations’ proportions (determined by calculating the fraction of
the number points per class divided by the total number of points per burn site) to the
sampled proportions for each possible sample size.

This di�erence is expressed as the mean absolute error (MAE) between each severity
class’s proportion from sampled points and from the overall population for each sever-
ity classi�cation.

MAE =
1

k

k∑
j=1

|(Severityi,population − Severityi,sample)| (A.3)

Where, Severity is the proportion of the given severity class i calculated for the popula-
tion and for the number of samples used, j. Where k is the total number of iterations.
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This approach has been applied to determine the minimum samples needed to accurately
represent the population proportions for each severity class.

Random Sampling

Random samples were taken from the overall population starting from one sample to
the total number of samples available in the population. This enabled the computation
of the di�erence (MAE) between sampled proportions and the overall populations’ pro-
portion, at each sample size. As there is a large variation in the possible combinations
of samples and proportions per sample size, a Monte-Carlo-type method was applied
(Metropolis et al., 1949). That is, the aforementioned process was repeated 1000 times
from which a mean value for the sample severity proportion was obtained. The num-
ber of iterations per sample size was chosen to su�ciently minimise the variation in
proportions per sample size as per the Monte-Carlo convergence (Cowles et al., 1996).
This was chosen as 1000 iterations exceeded the average minimum number of iterations
(see Table A.1 for a summary of the minimum number of iterations per site) required so
that the mean value is within an accuracy of 5% at 95% con�dence (Driels et al., 2004).
The main di�erence between a classic Monte-Carlo method and the method used here
is that samples are taken without replacement. Whilst used for a di�erent �eld of study,
statistically, this is intrinsically similar to the Monte-Carlo sampling approach used in a
study by Hale et al. (2012). Here, the minimum samples needed to represent the popula-
tion proportion of allele frequencies (gene mutations) for various animal species within
a mean error of 0.02 were calculated. By using this method at an error of 0.02, Hale et al.
(2012). were able to accurately estimate the proportions of samples.

This approach produced an exponential decay at which the mean absolute error in the
sampled burn severity proportion approaches zero with increasing sample size, as it
would be expected in a randomly distributed population. From this, the minimum num-
ber of samples needed to achieve an accurate (less than 0.02 error) depiction of the pop-
ulation proportions can be determined. Sample size estimation of multinomial popula-
tions from strati�ed random sampling has been investigated by Thompson (1987) and
Cochran (1977). Both provide sample size estimates between unknown population pro-
portions and sample proportions, suggesting possible values for the di�erence d (error)
at various signi�cance levels (99%, 95%, 90%, etc.). Typically, they suggest using a di�er-
ence of 0.01 or 0.02 and 0.02 or 0.05 for Thompson (1987) and Cochran (1977), respec-
tively, as well as a signi�cance level 95% in most cases. This general estimation provides
a worst-case sampling rate in excess of what is practical for recording observations. The
0.02 error used in this study has been chosen to remain consistent with the current prac-
tices of DELWP and with the studies of Thompson (1987), Cochran (1977), and Hale et al.
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(2012).

Transect Sampling

As an alternative to random sampling, transect sampling follows a prede�ned sampling
path, with regularly spaced samples taken. Transects were taken along every horizontal
and vertical grid line (in one direction) with sampling taken at the desired resolution.
Similarly, as with random sampling, 1000 combinations of transects were sampled (se-
lected at random with replacement) in order to provide robust results. This method is
intrinsically similar to Barabesi et al. (2012) of sub-sampled data, in which the di�erence
between transect-point and transect-line sampling methods were analysed.

As before, the MAE was calculated for each burn severity class and each combination
of transects. That is, the total count of each severity classi�cation for each combina-
tion of transects was divided by the number of points in each combination of transects.
Following this, the mean di�erence between the samples severity proportion and the
population proportions were calculated.
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A.3 Results

The direct comparison between random and transect sampling for the Gembrook burn
site is shown in Figure A.2. As expected, when the sampling rate of the burn site in-
creases, the mean absolute di�erence in the proportion decreases exponentially. For all
severity classes (except class 4), the mean fractional di�erence asymptotes below 0.01
when the sampling rate reaches roughly 50% of the overall points. At the Gembrook
burn site, the random sampling method reaches the 0.02 MAE baseline at a lower sam-
pling rate than that of the transect sample method for the severity classes 1-3. Severity
class 4 occurs in few locations, resulting in a much smaller total number of points and
consequently a negligible mean di�erence. This analysis shows that to reach the mini-
mum error in the representation of severity class 1, sampling rates of 1.98% and 17.36%
are needed for random and transect sampling, respectively. Likewise, a sampling rate
of 1.73 (7.13) and 1.00 (14.00) would be required for severity classes 2 and 3 for random
(transect) sampling.

Similarly, Figure A.3 shows the comparison of classes and sites over and under 400 Ha for
the average of all sites. Where each panel shows the mean, per class, for sites under 400
Ha and above 400 Ha as well as for transect and random sampling methods. Shown as a
shaded ribbon are the 0.25 and 0.75 quantile ranges of all the sites. Following Cleveland
et al. (1988) the �tted locally weighted regression or LOESS (Locally weighted scatterplot
smoothing) �t is �tted to each site as per Figure A.2 (Gembrook), in the form of :

y = a× log(b× x) + c (A.4)

However, this is a non-parametric regression providing a multivariate smoothing by
applying a �tted function of the variables locally (Cleveland et al., 1988). This LOESS
regression applies a low-degree polynomial �t at each point in the range, producing
multiple shape, intercept, and scale parameters to determine predictive statistics for the
relationship. From Equation 4, and using the LOESS regression we obtained the sam-
pling rate for an MAE of 0.02 for each site and sampling methods. A summary of the
results is also available in Table A.1. Here, results are consistent with observed values,
with Beaufort, Gembrook, and Yarck-Terrip requiring the largest sampling rate, in the
order of twice the magnitude of the other sites. In general, the sampling rate needed for
an MAE of 0.02 is 0.59% and 3.16% for random and transect sampling respectively (Figure
A.3). On average, transect sampling would, therefore, require 5.35 times the sampling
rate of random sampling to produce a 0.02 MAE.
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Figure A.2: Mean Absolute Error (MAE) or mean di�erence in classi�cation proportion (y-axis) versus the
sampling rate (x-axis) for the Gembrook site. Random (blue) and transect (pink) sampling are compared
directly against each other for each severity classi�cation. The minimum sample required for a maximum
di�erence of 0.02 is given for both random and transect sampling (excluding the most severe class). Also
shown are the �tted nonlinear least squares regression curves and 0.02 MAE intercepts and the 0.02 MAE
intercepts.

Lastly, the sampling rate for all severity classes for sites over 400 hectares and below
400 hectares has been compared (Figure A.4). This threshold has been chosen to remain
consistent with DELWP’s standard sampling practices, which state two di�erent sam-
pling rates for sites smaller and larger than 400 Ha. On average, sites smaller than 400
hectares require a sampling rate of 4.15% and 16.41% to achieve a maximum MAE of 0.02
for random and transect sampling, respectively, compared to 1.49% and 11.52% for sites
larger than 400 hectares (Figure A.4). In general, sites that are smaller than 400 hectares
require 1.4 and 2.8 times more points to be sampled than for sites over 400 hectares. This
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the sampling rate (x-axis) averaged for all sites. Each panel represents the severity classes for both random
and transect sampling methods. Also shown are the 0.25 to 0.75 quantile bounds for the range of MAE
values for all sites (shaded). Each colour represents sites greater than 400 Ha (pink) and less than 400 Ha
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is somewhat to be expected as the data are discrete categories. This means that as the
data’s population decrease (the site size) the standard deviation increases considerably
compared to larger sites, therefore providing larger inaccuracies. It is also found that
there is a large di�erence between the median and mean sampling rates for transect sam-
pling, which is due to the variability in the accuracy of the sampling method in contrast
with random sampling. Values range between a sampling rate of 0.04% and 2.02% and
between 0.02% and 17.35% for random and transect sampling, respectively. This high-
lights that for transect sampling, the sampling rate needed for a mean di�erence of 0.02
is consistently higher than that achieved using the random sampling method, irrespec-
tive of the site, its overall burn severity, and the severity proportion of the achieved burn.

As with the Gembrook site, the number of points per class a�ects the sampling rate
required for an MAE of 0.02 for each of the burn sites. It should be noted that classes
with a very small number of points will have a near-zero proportion which may di�er
substantially from the populations’ proportion. Where classes do not have any samples,
the proportion is denoted as NA in Table A.1. Due to this, it is often the case that Class 4
has much lower errors than the other classes. As there is a large error in the population
proportions depending on the number of plots recorded per class, a locally weighted
regression was �tted to both the random and transect methods for each class.
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A.4 Discussion and Conclusions

Recommendations of “good practices” for the accurate assessment of remotely sensed
data products refer to estimations of sample size of “strata” or classes from Thompson
(1987) and Cochran (1977) (Olofsson et al., 2014). These generally provide rough esti-
mates of worst-case scenarios which often over- or underestimate sampling rates used
for strati�ed random sampling, only. This does not allow for the consideration of geo-
graphical di�erences between study sites nor does it take into account a comparison of
various sampling techniques such as transect and random sampling. Due to economic,
methodological and other constraints, government organisations such as DELWP often
are required to assess the “good practices” of ground measurements such as with �re
severity.

To determine the minimum sampling rate for e�ective and e�cient ground measure-
ments of burn severity across forests, this study presents a comparison between two
di�erent sampling techniques, drawing spatially distributed data from remotely sensed
severity assessments. The accuracy from which a sample size was drawn from a burn
site to depict the overall classi�cation characteristics was estimated using both random
sampling and sampling along transects. The minimum sampling rate required to achieve
a di�erence of less than 0.02 between the sample classi�cation and the overall burn clas-
si�cation was compared across ten managed burn sites across Victoria, Australia.

We �nd that random sampling requires much lower sampling rates for an MAE of 0.02
or less for the ten burn sites compared to transect sampling. This is also the case for
each of the severity classes, however, accuracy is generally limited by the number of
points within the class itself. As the number of points within a class increases, the MAE
decreases. As a consequence, larger sites require a much lower spatial sampling rate
than smaller sites, to obtain the same MAE. At the same time, burnt areas become more
homogeneous at larger scales, reducing the small-scale patchiness of the burns. How-
ever, it must be noted that the total number of samples needed will also be higher. Both
random and transect sampling follow an exponential decay with increasing sampling
rates which is observed for all sites and severity classes.

The results shown here indicate that across all sites, sampling is required at a rate of
0.58% and 5.35% for random and transect sampling. Furthermore, our results show that
for sites smaller than 400 hectares, sampling would be required at a rate of 0.89% and
5.35% for random and transect sampling, respectively. Sites larger than 400 hectares
would require a sampling rate of 0.73% and 3.4% for random and transect sampling, re-
spectively. These results highlight that random sampling requires a lower number of
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points per hectare sampled and also that the sampling rate is dependent on the size of a
site.

Overall, the results suggest that the current sampling rate speci�ed by DELWP may not
be su�cient to accurately depict burn severity. DELWP indicates that sampling should
be made at a rate of 4% for sites smaller than 400 ha and 2% for sites over 400 ha. Consid-
ering transect sampling only, our results indicate that the sampling rate of sites smaller
than 400 hectares should be a minimum of 5.35% compared with the 4% designated by
DELWP, however, for sites larger than 400 hectares, sampling is only required at 3.4%
compared to 2% Note that the required sampling rate would substantially reduce by se-
lecting an MAE smaller than 0.02 (2%).

One caveat of this work is that further studies are necessary to determine the cost-bene�t
or e�ciency of employing the random sampling method compared to transect sampling.
It may not be realistic to apply random sampling across a large site where the time taken
walking between random plot locations could be greater than the time taken to record
data where plot locations are in a straight transect. In such cases, recording data us-
ing transects could prove more cost-e�ective than using random sampling. This is also
dependent on the number of observers, the size, and type of data recorded as well as
other factors that are not considered as factors in this study, which focused purely on
the di�erences in sampling requirements of burn sites.
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APPENDIXB
Additional Content

Overview Any additional �gures, tables or equations referred to in text but not
discussed in detail are to be presented in this appendix chapter.
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Figures

B.1 Figures
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Figure B.1: Time-longitude Hovmöller diagrams of anomalous monthly soil moisture (compared to the
1979-2015 climatological mean) for each moisture index averaged between 10◦S and 44.5◦S latitudes
during the 2010-2015 period.
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Figure B.2: API, SPI, KBDI, MSDI, and maximum temperature versus FRP (MW) for all �res in Australia
between 2000 and 2015 (retrieved from MODIS) separated by Köppen-Geiger climate regimes.
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Figures

Figure B.3: Boxplots of moisture indices versus FRP and FFDI for each Köppen-Geiger climate regime.
FRP is given in ranges of MW and the scale of each moisture index indicates the anomaly of normalised
values. Data are for all �res in Australia between 2000 and 2015 (retrieved from MODIS)
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